[1] H.J. Dai, Carbon nanotubes:Synthesis, integration, and properties, Acc. Chem. Res. 35 (12) (2002) 1035-1044 [2] S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeong, S.H. Hong, Mechanical and electrical properties of cross-linked carbon nanotubes, Carbon 46 (3) (2008) 482-488 [3] S. Bhowmick, S. Ozden, R.A. Bizão, L.D. Machado, S.A.S. Asif, N.M. Pugno, D.S. Galvão, C.S. Tiwary, P.M. Ajayan, High temperature quasistatic and dynamic mechanical behavior of interconnected 3D carbon nanotube structures, Carbon 142 (2019) 291-299 [4] F. Wei, Q. Zhang, W.Z. Qian, H. Yu, Y. Wang, G.H. Luo, G.H. Xu, D.Z. Wang, The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor:A multiscale space-time analysis, Powder Technol. 183 (1) (2008) 10-20 [5] H. Yu, Q.F. Zhang, F. Wei, W.Z. Qian, G.H. Luo, Agglomerated CNTs synthesized in a fluidized bed reactor:Agglomerate structure and formation mechanism, Carbon 41 (14) (2003) 2855-2863 [6] Y. Wang, F. Wei, G.S. Gu, H. Yu, Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor, Phys. B:Condens. Matter 323 (1-4) (2002) 327-329 [7] Y. Wang, F. Wei, G.H. Luo, H. Yu, G.S. Gu, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chem. Phys. Lett. 364 (5-6) (2002) 568-572 [8] H. Dashtian, M. Sahimi, Analysis of pressure fluctuations in fluidized beds. III. The significance of the cross correlations, Chem. Eng. Sci. 101 (2013) 390-400 [9] J. Xiang, Q.H. Li, A.Y. Wang, Y.G. Zhang, Mathematical analysis of characteristic pressure fluctuations in a bubbling fluidized bed, Powder Technol. 333 (2018) 167-179 [10] H. Yu, Q.F. Zhang, G.S. Gu, Y. Wang, G.H. Luo, F. Wei, Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed, AIChE J. 52 (12) (2006) 4110-4123 [11] C. Huang, Y. Wang, F. Wei, Solids mixing behavior in a nano-agglomerate fluidized bed, Powder Technol. 182 (3) (2008) 334-341 [12] D. Escudero, T.J. Heindel, Bed height and material density effects on fluidized bed hydrodynamics, Chem. Eng. Sci. 66 (16) (2011) 3648-3655 [13] Z.G. Zhao, J.W. Zhang, G.Y. Zhang, X. Zeng, X.X. Liu, G.W. Xu, Hydrodynamic characterization of a tapered gas-solid bed without a gas distributor, Powder Technol. 256 (2014) 300-309 [14] N.P. Franka, T.J. Heindel, Local time-averaged gas holdup in a fluidized bed with side air injection using X-ray computed tomography, Powder Technol. 193 (1) (2009) 69-78 [15] J. Wiens, T. Pugsley, Tomographic imaging of a conical fluidized bed of dry pharmaceutical granule, Powder Technol. 169 (1) (2006) 49-59 [16] H.T. Bi, A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds, Chem. Eng. Sci. 62 (13) (2007) 3473-3493 [17] A.J. Croxford, M.A. Gilbertson, Pressure fluctuations in bubbling gas-fluidized beds, Chem. Eng. Sci. 66 (16) (2011) 3569-3578 [18] Y.M. Chen, C. J.Lim, J.R. Grace, J.Y. Zhang, Y.C. Zhao, C.G. Zheng, Characterization of pressure fluctuations from a gas-solid fluidized bed by structure density function analysis, Chem. Eng. Sci. 129 (2015) 156-167 [19] J. Xiang, Q.H. Li, Z.C. Tan, Y.G. Zhang, Characterization of the flow in a gas-solid bubbling fluidized bed by pressure fluctuation, Chem. Eng. Sci. 174 (2017) 93-103 [20] S. Sasic, B. Leckner, F. Johnsson, Parametric modelling of time series of pressure fluctuations in gas-solid fluidized beds, Chem. Eng. Sci. 60 (18) (2005) 5069-5077 [21] F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner, Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiph. Flow 26 (4) (2000) 663-715 [22] C.A.S. Felipe, S.C.S. Rocha, Prediction of minimum fluidization velocity of gas-solid fluidized beds by pressure fluctuation measurements-Analysis of the standard deviation methodology, Powder Technol. 174 (3) (2007) 104-113 [23] H. Bi, A.H. Chen, Pressure fluctuations in gas-solids fluidized beds, China Particuology 1 (4) (2003) 139-144 [24] E. Ramirez, C.E.A. Finney, S. Pannala, C.S. Daw, J. Halow, Q.G. Xiong, Computational study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed, Chem. Eng. J. 308 (2017) 544-556 [25] S.H. Lee, S.D. Kim, S.H. Park, Statistical and deterministic chaos analysis of pressure fluctuations in a fluidized bed of polymer powders, Korean J. Chem. Eng. 19 (6) (2002) 1020-1025 [26] T.Y. Yang, L.P. Leu, Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuations, Chem. Eng. Sci. 63 (7) (2008) 1950-1970 [27] T. Zhao, K. Liu, J.E. Choi, Y.H. Cui, M. Takei, D.H. Doh, Wavelet analysis of the particle distribution in a down-flow fluidized bed based on electrical capacitance tomography images, Powder Technol. 211 (2-3) (2011) 264-274 [28] J.Y. Sun, Y. Yan, Characterization of flow intermittency and coherent structures in a gas-solid circulating fluidized bed through electrostatic sensing, Ind. Eng. Chem. Res. 55 (46) (2016) 12133-12148 [29] S. Wu, F.Y. Meng, Y.Q. He, Scale resolution of fiber optical signals in circulating fluidized bed, Chem. Eng. Sci. 182 (2018) 162-170 [30] G.P. Wu, Y. He, L. Luo, W. Chen, Dynamic characterizations of gas-solid flow in a novel multistage fluidized bed via nonlinear analyses, Chem. Eng. J. 359 (2019) 1013-1023 [31] H.W. Jiang, H.W. Chen, J.Q. Gao, J.F. Lu, Y. Wang, C.P. Wang, Characterization of gas-solid fluidization in fluidized beds with different particle size distributions by analyzing pressure fluctuations in wind caps, Chem. Eng. J. 352 (2018) 923-939 [32] G.B. Zhao, Y.R. Yang, Multiscale resolution of fluidized-bed pressure fluctuations, AIChE J. 49 (4) (2003) 869-882 [33] B.Y. Wu, A. Kantzas, C.T. Bellehumeur, Z.X. He, S. Kryuchkov, Multiresolution analysis of pressure fluctuations in a gas-solids fluidized bed:Application to glass beads and polyethylene powder systems, Chem. Eng. J. 131 (1-3) (2007) 23-33 [34] C.D. Si, J. Zhou, Q.J. Guo, Characterization of pressure fluctuation signals in an acoustic bubbling fluidized bed, J. Taiwan Inst. Chem. Eng. 42 (6) (2011) 929-936 [35] S.G. Mallat, A theory for multiresolution signal decomposition:the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 674-693 [36] M.C. Shou, L.P. Leu, Energy of power spectral density function and wavelet analysis of absolute pressure fluctuation measurements in fluidized beds, Chem. Eng. Res. Des. 83 (5) (2005) 478-491 [37] Q.J. Guo, G.X. Yue, T. Suda, J. Sato, Flow characteristics in a bubbling fluidized bed at elevated temperature, Chem. Eng. Process.:Process. Intensif. 42 (6) (2003) 439-447 [38] H.J. Sun, C.B. Hu, Y.H. Xu, Pressure fluctuations analysis on the powder fluidization performance at different pressure, Int. J. Multiph. Flow 116 (2019) 176-184 [39] Y.F. Zhou, L. Yang, Y.J. Lu, X.Y. Hu, X. Luo, H.B. Chen, Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique, Chem. Eng. J. 334 (2018) 1484-1492 [40] T.Y. Yang, L.P. Leu, Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed, AIChE J. 55 (3) (2009) 612-629 [41] C. Sobrino, S. Sánchez-Delgado, N. García-Hernando, M. de Vega, Standard deviation of absolute and differential pressure fluctuations in fluidized beds of group B particles, Chem. Eng. Res. Des. 86 (11) (2008) 1236-1242 [42] H.T. Bi, N. Ellis, I.A. Abba, J.R. Grace, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci. 55 (21) (2000) 4789-4825 [43] P.H. Westfall, Kurtosis as peakedness, 1905-2014.R.I.P, Am. Stat. 68 (3) (2014) 191-195. [44] H.R. Norouzi, M. Tahmasebpoor, R. Zarghami, N. Mostoufi, Multi-scale analysis of flow structures in fluidized beds with immersed tubes, Particuology 21 (2015) 99-106 [45] S.M. Okhovat-Alavian, J. Behin, N. Mostoufi, Investigating the flow structures in semi-cylindrical bubbling fluidized bed using pressure fluctuation signals, Adv. Powder Technol. 30 (6) (2019) 1247-1256 |