[1] J. Wang, Y.N. Zhang, P. Hudon, I.H. Jung, M. Medraj, P. Chartrand, Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300℃, J. Alloys Compd., 639 (2015)593-601 [2] Aghion E., Bronfin B., Eliezer D., Von Buch F., Schumann S., Friedrich H.E., The art of developing new magnesium alloys for high temperature applications, In: 2nd International Conference on Platform Science and Technology for Advanced Magnesium Alloys, Osaka, Japan (2003) 407–418 [3] S. Shang, W. Wang, B. Zhou, Y. Wang, K. Darling, L. Kecskes, S. Mathaudhu, Z. Liu, Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation, Acta Mater., 67 (2014)168-180 [4] S. Ağduk, G. Gökoğlu, High-pressure elasticity and lattice dynamics of Mg2La from first principles, J. Alloys Compd., 520 (2012)93-97 [5] R. Mahjoub, K.J. Laws, J.P. Scicluna, J.E. Daniels, M. Ferry, A first principles molecular dynamics study of the relationship between atomic structure and elastic properties of Mg–Zn–Ca amorphous alloys, Comput. Mater. Sci., 96 (96) (2015)246-255 [6] L. Shao, T.T. Shi, J. Zheng, H.C. Wang, X.Z. Pan, B.Y. Tang, First-principles study of point defects in C14 MgZn2 Laves phase, J. Alloys Compd., 654 (2016)475-481 [7] J.M. Kim, K.D. Seong, J.H. Jun, K. Shin, K.T. Kim, W.J. Jung, Microstructural characteristics and mechanical properties of Al–2.5 wt.% Li–1.2 wt.% Cu–xMg alloys, J. Alloys Compd., 434 (2007)324-326 [8] S.S. Park, G. Bae, D. Kang, I.-H. Jung, K. Shin, N.J. Kim, Microstructure and tensile properties of twin-roll cast Mg–Zn–Mn–Al alloys, Scr. Mater., 57 (9) (2007)793-796 [9] J.B. Whalen, J.V. Zaikina, R. Achey, R. Stillwell, H. Zhou, C.R. Wiebe, S.E. Latturner, Metal to Semimetal Transition in CaMgSi Crystals Grown from Mg-Al Flux, Chem. Mater., 22 (5) (2010)1846-1853 [10] M. Hampl, J. Gröbner, R. Schmid-Fetzer, Experimental study of phase equilibria and solidification microstructures of Mg–Ca–Ce alloys combined with thermodynamic modeling, J. Mater. Sci., 42 (24) (2007)10023-10031 [11] J. Gröbner, I. Chumak, R. Schmid-Fetzer, Experimental study of ternary Ca–Mg–Si phase equilibria and thermodynamic assessment of Ca–Si and Ca–Mg–Si systems, Intermetallics, 11 (10) (2003)1065-1074 [12] X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai, L. Ruan, Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy, Acta Biomater., 7 (4) (2010)1880-1889 [13] D. Liu, X. Zhu, J. Qin, A. Wang, J. Duan, T. Gu, First-Principles Study of Chemical and Topological Short-Range Orders in the Mg–Si Liquid Alloys, Met., 6 (4) (2016)78-87 [14] K. Silsby, F. Sui, X. Ma, S.M. Kauzlarich, S.E. Latturner, Thermoelectric properties of Ba1.9Ca2.4Mg9.7Si7: A new silicide Zintl phase with the Zr2Fe12P7 structure type, Chem. Mater., 27 (19) (2015)6708-6716 [15] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29 (10) (2008)1329-1344 [16] A. Gil-Santos, G. Szakacs, N. Moelans, N. Hort, O.V.d. Biest, Microstructure and mechanical characterization of cast Mg-Ca-Si alloys, J. Alloys Compd. 694 (2017) 767–776. [17] Katsura, Yukari, Takagi, Hidenori, MgSrSi-Type Compounds as a Possible New Family of Thermoelectric Materials, J. Electron. Mater., 42 (7) (2013)1365-1368 [18] G. Ben-Hamu, D. Eliezer, K. Shin, The role of Si and Ca on new wrought Mg–Zn–Mn based alloy, Mater. Sci. Eng.: A, 447 (1) (2007)35-43 [19] G.Y. Yuan, Z.L. Liu, Q.D. Wang, W. Ding, Microstructure refinement of Mg–Al–Zn–Si alloys, Mater. Lett., 56 (1) (2002)53-58 [20] Y. Ai, C. Luo, J. Liu, Twinning of CaMgSi phase in a cast Mg–1.0 Ca–0.5 Si–0.3 Zr alloy, Acta Mater., 55 (2) (2007)531-538 [21] T. Hosono, M. Kuramoto, Y. Matsuzawa, Y. Momose, Y. Maeda, T. Matsuyama, H. Tatsuoka, Y. Fukuda, S. Hashimoto, H. Kuwabara, Formation of CaMgSi at Ca2Si/Mg2Si interface, Appl. Surf. Sci., 216 (1-4) (2003)620-624 [22] Y. Niwa, Y. Todaka, T. Masuda, T. Kawai, M. Umemoto, Thermoelectric Properties of Ca-Mg-Si Alloys, Mater. Trans., 50 (7) (2009)1725-1729 [23] F.V. Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, Entwicklung neuer kriechbeständiger Magnesium-druckgusslegierungen, Metall 56 (1–2) (2002) 40–48. [24] R. Wu, Y.P. Wang, Y. Yang, D.M. Luo, H. Meng, L. Ma, B.Y. Tang, Structural and mechanical properties of ternary MgCaSi phase: A study by density functional theory, J. Chem. Res., 44 (1-2) (2019)50-59 [25] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comput. Phys. Commun., 119 (1) (1999)67-98 [26] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter, 59 (3) (1999)1758-1775 [27] J.P. Perdew, Generalized gradient approximations for exchange and correlation: A look backward and forward, Phys. B, 172 (1) (1991)1-6 [28] J.P. Perdew, K. Burke, M. Ernzerhof, ERRATA:Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18) (1996)3865-3868 [29] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (12) (1976)5188-5192 [30] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 49 (23) (1994)16223-16233 [31] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Mater., 100 (2015)90-97 [32] A. Haug, Theoretical solid state physics, INT. J. THEOR. PHYS. (2) (1985)341-343 [33] R.K. Pan, H.C. Wang, T.T. Shi, X. Tian, B.Y. Tang, Thermal properties and thermoelasticity of L1/2 ordered Al3RE (RE=Er, Tm, Yb, Lu) phases: A first-principles study, Mater. Des., 102 (2016)100-105 [34] X.G. Lu, M. Selleby, S. Bo, Calculations of thermophysical properties of cubic carbides and nitrides using the Debye–Grüneisen model, Acta Mater., 55 (4) (2007)1215-1226 [35] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158 (1) (2004)57-72 [36] A. Otero-De-La-Roza, D. Abbasi-Pérez, V. Luaña, GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (10) (2011) 2232–2248. [37] P. Eckerlin, E. Wölfel, Die Kristallstruktur von Ca2Si und Ca2Ge, Z. ANORG. ALLG. CHEM., 280 (5‐6) (1955)321-331 [38] D.B. Migas, L. Miglio, V.L. Shaposhnikov, V.E. Borisenko, Comparative study of structural, electronic and optical properties of Ca2Si, Ca2Ge, Ca2Sn, and Ca2Pb, Phys. Rev. B, 67 (20) (2003)205-203 [39] N. Miyazaki, N. Adachi, Y. Todaka, H. Miyazaki, Y. Nishino, Thermoelectric property of bulk CaMgSi intermetallic compound, J. Alloys Compd., 691 (2017)914-918 [40] A. Gil-santos, G. Szakacs, N. Moelans, Electronic and crystal structures of thermoelectric CaMgSi intermetallic compound, J. Electron. Spectrosc. Relat. Phenom. 206 (2016) 18–23. [41] B. Sahu, Electronic structure and bonding of ultralight LiMg, Mater. Sci. Eng.: B, 49 (1) (1997)74-78 [42] A. Gil-Santos, G. Szakacs, N. Moelans, N. Hort, V.D.B. Omer, Microstructure and mechanical characterization of cast Mg-Ca-Si alloys, J. Alloys Compd., 694 (2017)767-776 [43] D. Allali, A. Bouhemadou, F. Zerarga, M.A. Ghebouli, S. Bin-Omran, Prediction study of the elastic and thermodynamic properties of the SnMg2O4, SnZn2O4 and SnCd2O4 spinel oxides, Comput. Mater. Sci., 60 (2012)217-223 [44] M.A. Hadi, M. Roknuzzaman, A. Chroneos, A.K.M.A. Islam, R.V. Vovk, K. Ostrikov, S.H. Naqib, Elastic and thermodynamic properties of new (Zr3-xTix)AlC2 MAX-phase solid solutions, Comput. Mater. Sci., 137 (2017)318-326 [45] B. Huang, Y.H. Duan, W.C. Hu, Y. Sun, S. Chen, Structural, anisotropic elastic and thermal properties of MB (M=Ti, Zr and Hf) monoborides, Ceram. Int., 41 (5) (2015)6831-6843 [46] W. Bao, D. Liu, P. Li, Y. Duan, Structural properties, elastic anisotropies and thermal conductivities of tetragonal LnB2C2 (Ln=Rare Earth) compounds from first-principles calculations, Ceram. Int. 45 (2, Part A) (2019) 1857–1867. [47] Y. Imai, A. Watanabe, Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method, Intermetallics, 10 (4) (2002)333-341 [48] Lue C.S., Su T., Xie B., Cheng C., Comparative NMR study of hybridization effect and structural stability in D022-type NbAl3 and NbGa3, Phys. Rev. B 74 (9) (2006) 094101(1–5) |