中国化学工程学报 ›› 2022, Vol. 41 ›› Issue (1): 49-72.DOI: 10.1016/j.cjche.2021.08.023
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo
收稿日期:
2021-06-21
修回日期:
2021-08-30
出版日期:
2022-01-28
发布日期:
2022-02-25
通讯作者:
Guangsheng Luo,E-mail address:gsluo@tsinghua.edu.cn
基金资助:
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo
Received:
2021-06-21
Revised:
2021-08-30
Online:
2022-01-28
Published:
2022-02-25
Contact:
Guangsheng Luo,E-mail address:gsluo@tsinghua.edu.cn
Supported by:
摘要: Microfluidic technology has been successfully applied to determine the reaction kinetics relying on its great characteristics including narrow residence time distribution, fast mixing, high mass and heat transfer rates and very low consumption of materials. In this review, the recent progresses about the reaction kinetics measured in microreactors are comprehensively organized, and the kinetic modeling thoughts, determination methods and essential kinetic regularities contained in these studies are summarized according to the reaction types involving nitration, oxidation, hydrogenation, photochemical reaction, polymerization and other reactions. Besides, the significant advances in the innovation of microplatform are also covered. The novel reactor configuration methods were established mainly to achieve rapid and efficient data collection and analysis. Finally, the advantages of microfluidic technology for the kinetic measurement are summarized, and a perspective for the future development is provided.
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. 中国化学工程学报, 2022, 41(1): 49-72.
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 49-72.
[1] S. Lu, K. Wang, Kinetic study of TBD catalyzed d-valerolactone polymerization using a gas-driven droplet flow reactor, React. Chem. Eng. 4(2019) 1189–1194. [2] Z. Yao, X. Xu, Y. Dong, X. Liu, B. Yuan, K. Wang, K. Cao, G. Luo, Kinetics on thermal dissociation and oligomerization of dicyclopentadiene in a high temperature & pressure microreactor, Chem. Eng. Sci. 228(2020) 115892. [3] X. Lin, K. Wang, B. Zhou, G. Luo, A microreactor-based research for the kinetics of polyvinyl butyral (PVB) synthesis reaction, Chem. Eng. J. 383(2020) 123181. [4] M. Guo, Q. Chen, Y. Liang, Y. Wang, G. Luo, H. Yu, Experimental and modelbased study of biohydration of acrylonitrile to acrylamide in a microstructured chemical system, AIChE J. 66(2020) e16298. [5] A. Hommes, A.J. ter Horst, M. Koeslag, H.J. Heeres, J. Yue, Experimental and modeling studies on the Ru/C catalyzed levulinic acid hydrogenation to cvalerolactone in packed bed microreactors, Chem. Eng. J. 399(2020) 125750. [6] Z. Yan, Z. Ma, J. Deng, G. Luo, Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates, Chem. Eng. Sci. 242(2021) 116746. [7] Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Microreaction processes for synthesis and utilization of epoxides: A review, Chem. Eng. Sci. 229(2021) 116071. [8] J. Deng, J. Zhang, K. Wang, G. Luo, Microreaction Technology for Synthetic Chemistry, Chinese J. Chem. 37(2019) 161–170. [9] Y. Lu, D. Xin, J. Zhang, G. Luo, Modeling ethyl diazoacetate synthesis in an adiabatic microchemical system, Chem. Eng. J. 273(2015) 406–412. [10] C. Shen, M. Shang, H. Zhang, Y. Su, A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization, AIChE J. 66(2020) e16841. [11] H. Keles, F. Susanne, H. Livingstone, S. Hunter, C. Wade, R. Bourdon, A. Rutter, Development of a robust and reusable microreactor employing laser based mid-IR chemical imaging for the automated quantification of reaction kinetics, Org. Process Res. Dev. 21(2017) 1761–1768. [12] D. Russo, G. Tomaiuolo, R. Andreozzi, S. Guido, A.A. Lapkin, I. Di Somma, Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor, Chem. Eng. J. 377(2019) 120346. [13] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Gas–liquid and liquid–liquid mass transfer in microstructured reactors, Chem. Eng. Sci. 66(2011) 3876– 3897. [14] Z. Wen, M. Yang, S. Zhao, F. Zhou, G. Chen, Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene, React. Chem. Eng. 3(2018) 379–387. [15] P. Wang, K. Wang, J. Zhang, G. Luo, Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system, AIChE J. 61(2015) 3804–3811. [16] N. Padoin, L. Andrade, J. Ângelo, A. Mendes, R.D.F.P. Moreira, C. Soares, Intensification of photocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene, AIChE J. 62(2016) 2794–2802. [17] C. Dong, K. Wang, J.S. Zhang, G.S. Luo, Reaction kinetics of cyclohexanone ammoximation over TS-1 catalyst in a microreactor, Chem. Eng. Sci. 126(2015) 633–640. [18] M. Krivec, A. Pohar, B. Likozar, G. Dražić, Hydrodynamics, mass transfer, and photocatalytic phenol selective oxidation reaction kinetics in a fixed TiO2 microreactor, AIChE J. 61(2015) 572–581. [19] J.P. Mcmullen, K.F. Jensen, Rapid determination of reaction kinetics with an automated microfluidic system, Org. Process Res. Dev. 15(2011) 398–407. [20] N.T. Nguyen, Z.G. Wu, Micromixers-a review, J. Micromech. Microeng. 15(2005) R1–R16. [21] K. Wang, G. Luo, Microflow extraction: A review of recent development, Chem. Eng. Sci. 169(2017) 18–33. [22] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems: a review, Annu. Rev. Chem. Biomol. 8(2017) 285–305. [23] J. Sui, J. Yan, D. Liu, K. Wang, G. Luo, Continuous synthesis of nanocrystals via flow chemistry technology, Small 16(2020) 1902828. [24] F. Benito-Lopez, W. Verboom, M. Kakuta, J.H.G.E. Gardeniers, R.J.M. Egberink, E. R. Oosterbroek, A. van den Berg, D.N. Reinhoudt, Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor, Chemical communications (Cambridge, England) (2005) 2857-2859 [25] A. Muto, M. Ebata, A. Inoue. Development of a microreactor for rapid analysis of chemical reaction kinetics with absorption specrtoscopy, IEEE, 2008. [26] X. Duan, J. Tu, A.R. Teixeira, L. Sang, K.F. Jensen, J. Zhang, An automated flow platform for accurate determination of gas-liquid-solid reaction kinetics, React. Chem. Eng. 5(2020) 1751–1758. [27] J.S. Moore, C.D. Smith, K.F. Jensen, Kinetics analysis and automated online screening of aminocarbonylation of aryl halides in flow, React. Chem. Eng. 1(2016) 272–279. [28] Y.F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, Kinetic study of selective CO oxidation in H2-rich gas on a Ru/c-Al2O3 catalyst, Phys. Chem. Chem. Phys. 4(2002) 389–397. [29] J.S. Moore, K.F. Jensen, “Batch” Kinetics in flow: online IR analysis and continuous control, Angewandte Chemie International Edition 53(2014) 470– 473. [30] K. Wang, Y.C. Lu, Y. Xia, H.W. Shao, G.S. Luo, Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor, Chem. Eng. J. 169(2011) 290–298. [31] C. Zhang, J. Zhang, G. Luo, Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor, J. Flow Chem. 10(2020) 219– 226. [32] J.S. Zhang, C.Y. Zhang, G.T. Liu, G.S. Luo, Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor, Chem. Eng. J. 295(2016) 384–390. [33] Z. Lan, Y. Lu, Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling, J. Flow Chem. 11(2021) 171–179. [34] J. Grant, P.T.O. Kane, B.R. Kimmel, M. Mrksich, Using microfluidics and imaging SAMDI-MS to characterize reaction kinetics, ACS Cent. Sci. 5(2019) 486–493. [35] E. Fradet, P. Abbyad, M.H. Vos, C.N. Baroud, Parallel measurements of reaction kinetics using ultralow-volumes, Lab Chip 13(2013) 4326–4330. [36] C. Zheng, B. Zhao, K. Wang, G. Luo, Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique, AIChE J. 61(2015) 4358–4366. [37] A.A. Kulkarni, Continuous flow nitration in miniaturized devices, Beilstein J. Org. Chem. 10(2014) 405–424. [38] L. Li, C. Yao, F. Jiao, M. Han, G. Chen, Experimental and kinetic study of the nitration of 2-ethylhexanol in capillary microreactors, Chem. Eng. Process. Process Intensif. 117(2017) 179–185. [39] C. Zhang, J. Zhang, G. Luo, Kinetic study and intensification of acetyl guaiacol nitration with nitric acid—acetic acid system in a microreactor, J. Flow Chem. 6(2016) 309–314. [40] J. Tan, L. Du, Y.C. Lu, J.H. Xu, G.S. Luo, Development of a gas–liquid microstructured system for oxidation of hydrogenated 2-ethyltetrahydroanthraquinone, Chem. Eng. J. 171(2011) 1406–1414. [41] K. Bawornruttanaboonya, N. Laosiripojana, A.S. Mujumdar, S. Devahastin, Catalytic partial oxidation of CH4 over bimetallic Ni-Re/Al2O3: Kinetic determination for application in microreactor, AIChE J. 64(2018) 1691–1701. [42] R.H. Nibbelke, M.A.J. Campman, J.H.B.J. Hoebink, G.B. Marin, Kinetic Study of the CO Oxidation over Pt/c-Al2O3 and Pt/Rh/CeO2/c-Al2O3 in the Presence of H2O and CO2, J. Catal. 171(1997) 358–373. [43] G. Nikolaidis, T. Baier, R. Zapf, G. Kolb, V. Hessel, W.F. Maier, Kinetic study of CO preferential oxidation over Pt–Rh/c-Al2O3 catalyst in a micro-structured recycle reactor, Catal. Today 145(2009) 90–100. [44] V. Russo, T. Kilpiö, J. Hernandez Carucci, M. Di Serio, T.O. Salmi, Modeling of microreactors for ethylene epoxidation and total oxidation, Chem. Eng. Sci. 134(2015) 563–571. [45] F. Ebrahimi, E. Kolehmainen, A. Laari, H. Haario, D. Semenov, I. Turunen, Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling, Chem. Eng. Sci. 71(2012) 531–538. [46] H. Zhao, S. Liu, M. Shang, Y. Su, Direct oxidation of benzene to phenol in a microreactor: Process parameters and reaction kinetics study, Chem. Eng. Sci. 246(2021) 116907. [47] G. Li, S. Liu, X. Dou, H. Wei, M. Shang, Z.H. Luo, Y. Su, Synthesis of adipic acid through oxidation of K/A oil and its kinetic study in a microreactor system, AIChE J. 66(2020) e16289. [48] T.A. Nijhuis, J. Chen, S.M.A. Kriescher, J.C. Schouten, The direct epoxidation of propene in the explosive regime in a microreactor-a study into the reaction kinetics, Ind. Eng. Chem. Res. 49(2010) 10479–10485. [49] Z. Vajglová, N. Kumar, K. Eränen, M. Peurla, D.Y. Murzin, T. Salmi, Ethene oxychlorination over CuCl2/c-Al2O3 catalyst in micro- and millistructured reactors, J. Catal. 364(2018) 334–344. [50] G. Wu, E. Cao, P. Ellis, A. Constantinou, S. Kuhn, A. Gavriilidis, Continuous flow aerobic oxidation of benzyl alcohol on Ru/Al2O3 catalyst in a flat membrane microchannel reactor: An experimental and modelling study, Chem. Eng. Sci. 201(2019) 386–396. [51] J. Singh, N. Kockmann, K.D.P. Nigam, Novel three-dimensional microfluidic device for process intensification, Chem. Eng. Process. Process Intensif. 86(2014) 78–89. [52] Y. Maralla, S.H. Sonawane, Process intensification by using a helical capillary microreactor for a continuous flow synthesis of peroxypropionic acid and its kinetic study, Periodica Polytechnica Chem. Eng. 64(2019) 9–19. [53] A. Tušek, A. Aalić, B. Zelić Kurtanjek, Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor, Eng. Life Sci. 12(2012) 49–56. [54] A.A. Mirzaei, A. Pourdolat, M. Arsalanfar, H. Atashi, A.R. Samimi, Kinetic study of CO hydrogenation on the MgO supported Fe–Co–Mn sol–gel catalyst, J. Ind. Eng. Chem. 19(2013) 1144–1152. [55] N. Mahata, V. Vishwanathan, Kinetics of phenol hydrogenation over supported palladium catalyst, J. Mol. Catal. A: Chem. 120(1997) 267–270. [56] N. Joshi, A. Lawal, Hydrodeoxygenation of 4-propylguaiacol (2-methoxy-4-propylphenol) in a microreactor: performance and kinetic studies, Ind. Eng. Chem. Res. 52(2013) 4049–4058. [57] S. Vahid, A.A. Mirzaei, An investigation of the kinetics and mechanism of Fischer-Tropsch synthesis on Fe–Co–Ni supported catalyst, J. Ind. Eng. Chem. 20(2014) 2166–2173. [58] A.A. Mirzaei, E. Rezazadeh, M. Arsalanfar, M. Abdouss, M. Fatemi, M. Sahebi, Study on the reaction mechanism and kinetics of CO hydrogenation on a fused Fe-Mn catalyst, RSC Adv. 5(2015) 95287–95299. [59] A. Tanimu, S.A. Ganiyu, O. Muraza, K. Alhooshani, Palladium nanoparticles supported on ceria thin film for capillary microreactor application, Chem. Eng. Res. Des. 132(2018) 479–491. [60] K. Maresz, A. Ciemięga, J. Mrowiec-Białoń, Monolithic microreactors of different structure as an effective tool for in flow MPV reaction, Chem. Eng. J. 379(2020) 122281. [61] A.A. Mirzaei, M. Farahi, M. Akbari, Effect of reduction and reaction conditions on the catalytic performance of Co–Ni/Al2O3 catalyst in CO hydrogenation: modeling of surface reaction rate, Chem. Pap. 75(2021) 2087–2103. [62] V. Vishwanathan, V. Jayasri, P. Mahaboob Basha, Vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over alumina supported palladium catalyst — a kinetic study, React. Kinet. Catal. Lett. 91(2007) 291–298. [63] F.E. Massoth, P. Politzer, M.C. Concha, J.S. Murray, J. Jakowski, J. Simons, Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties, J. Phys. Chem. B 110(2006) 14283–14291. [64] P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, Reactions at supercritical conditions: Applications and fundamentals, AIChE J. 41(1995) 1723–1778. [65] E. Ramírez, F. Recasens, M. Fernández, M.A. Larrayoz, Sunflower oil hydrogenation on Pd/C in SC propane in a continuous recycle reactor, AIChE J. 50(2004) 1545–1555. [66] E.V. Rebrov, A. Berenguer-Murcia, H.E. Skelton, B.F.G. Johnson, A.E.H. Wheatley, J.C. Schouten, Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports, Lab Chip 9(2009) 503–506. [67] S. Chatani, C.J. Kloxin, C.N. Bowman, The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties, Polym. Chem.-UK 5(2014) 2187–2221. [68] Y. Su, V. Hessel, T. Noel, A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations, AIChE J. 61(2015) 2215– 2227. [69] M.L. Satuf, J. Macagno, A. Manassero, G. Bernal, P.A. Kler, C.L.A. Berli, Simple method for the assessment of intrinsic kinetic constants in photocatalytic microreactors, Appl. Catal. B 241(2019) 8–17. [70] G. Yu, N. Wang, Gas-liquid-solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment, Appl. Catal. A 591(2020) 117410. [71] X. Shi, S. Liu, C. Duanmu, M. Shang, M. Qiu, C. Shen, Y. Yang, Y. Su, Visible-light photooxidation of benzene to phenol in continuous-flow microreactors, Chem. Eng. J. 420(2021) 129976. [72] D.D. Phan, F. Babick, T.H.T. Tr nh, M.T. Nguyen, W. Samhaber, M. Stintz, Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes, Chem. Eng. Sci. 191(2018) 332–342. [73] T. Aillet, K. Loubière, L. Prat, O. Dechy-Cabaret, Impact of the diffusion limitation in microphotoreactors, AIChE J. 61(2015) 1284–1299. [74] N. El Achi, F. Gelat, N.P. Cheval, A. Mazzah, Y. Bakkour, M. Penhoat, L. ChaussetBoissarie, C. Rolando, Sensitized [2+2] intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects, React. Chem. Eng. 4(2019) 828–837. [75] Y. Takahashi, A. Nagaki, Anionic polymerization using flow microreactors, Molecules 24(2019) 1532. [76] C.O.C. López, Z. Fejes, B. Viskolcz, Microreactor assisted method for studying isocyanate–alcohol reaction kinetics, J. Flow Chem. 9(2019) 199–204. [77] L. Qiu, K. Wang, S. Zhu, Y. Lu, G. Luo, Kinetics study of acrylic acid polymerization with a microreactor platform, Chem. Eng. J. 284(2016) 233– 239. [78] L. Xiang, Y. Song, M. Qiu, Y. Su, Synthesis of branched poly(butyl acrylate) using the strathclyde method in continuous-flow microreactors, Ind. Eng. Chem. Res. 58(2019) 21312–21322. [79] P. Wang, K. Wang, J. Zhang, G. Luo, Preparation of poly(p-phenylene terephthalamide) in a microstructured chemical system, RSC Adv. 5(2015) 64055–64064. [80] S.S. Cutie, P.B. Smith, D.E. Henton, T.L. Staples, C. Powell, Acrylic acid polymerization kinetics, J. Polym. Sci. Pol. Phys. 35(1997) 2029–2047. [81] J. Huang, F. Sang, G. Luo, J. Xu, Continuous synthesis of Gabapentin with a microreaction system, Chem. Eng. Sci. 173(2017) 507–513. [82] C. Du, J. Zhang, G. Luo, Organocatalyzed Beckmann rearrangement of cyclohexanone oxime in a microreactor: Kinetic model and product inhibition, AIChE J. 64(2018) 571–577. [83] L. Li, J. Zhang, C. Du, K. Wang, G. Luo, Kinetics study of sulfuric acid alkylation of isobutane and butene using a microstructured chemical system, Ind. Eng. Chem. Res. 58(2018) 1150–1158. [84] M. Shang, T. Noël, Y. Su, V. Hessel, Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors, AIChE J. 63(2017) 689–697. [85] J.S. Zhang, Y.C. Lu, Q.R. Jin, K. Wang, G.S. Luo, Determination of kinetic parameters of dehydrochlorination of dichloropropanol in a microreactor, Chem. Eng. J. 203(2012) 142–147. [86] K. Shibatani, K. Fujii, Reaction of poly(vinyl alcohol) with formaldehyde and polymer stereoregularity-model compounds, J. Polym. Sci. Part A-1-Polym. Chem. 8(1970) 1647. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[2] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals[J]. 中国化学工程学报, 2023, 59(7): 32-41. |
[3] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles[J]. 中国化学工程学报, 2023, 59(7): 85-91. |
[4] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin[J]. 中国化学工程学报, 2023, 59(7): 92-104. |
[5] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[7] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies[J]. 中国化学工程学报, 2023, 58(6): 1-10. |
[8] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68. |
[9] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification[J]. 中国化学工程学报, 2023, 58(6): 163-169. |
[10] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281. |
[11] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[12] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[13] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures[J]. 中国化学工程学报, 2023, 53(1): 63-72. |
[14] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors[J]. 中国化学工程学报, 2023, 53(1): 243-250. |
[15] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics[J]. 中国化学工程学报, 2023, 53(1): 300-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||