[1] Q. Chen, I.E. Grossmann, Recent developments and challenges in optimizationbased process synthesis, Annu. Rev. Chem. Biomol. Eng. 8(2017) 249–283. [2] A. Mitsos, N. Asprion, C.A. Floudas, M. Bortz, M. Baldea, D. Bonvin, A. Caspari, P. Schäfer, Challenges in process optimization for new feedstocks and energy sources, Comput. Chem. Eng. 113(2018) 209–221. [3] J. Sansana, M.N. Joswiak, I. Castillo, Z.Y. Wang, R. Rendall, L.H. Chiang, M.S. Reis, Recent trends on hybrid modeling for Industry 4.0, Comput. Chem. Eng. 151(2021) 107365. [4] L.T. Biegler, I.E. Grossmann, Retrospective on optimization, Comput. Chem. Eng. 28(8) (2004) 1169–1192. [5] L.T. Biegler, Nonlinear Programming:Concepts, Algorithms, and Applications to Chemical Processes, Society for Industrial and Applied Mathematics, PA Philadelphia, 2010. [6] J. Javaloyes-Antón, R. Ruiz-Femenia, J.A. Caballero, Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm, Ind. Eng. Chem. Res. 52(44) (2013) 15621–15634. [7] H. Lyu, S.H. Li, C.T. Cui, X.G. Yu, J.S. Sun, Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene, Sep. Purif. Technol. 257(2021) 117907. [8] Y.M. Han, S. Liu, Z.Q. Geng, H.C. Gu, Y.X. Qu, Energy analysis and resources optimization of complex chemical processes: Evidence based on novel DEA cross-model, Energy 218(2021) 119508. [9] Z. Wang, Y.M. Han, C.F. Li, Z.Q. Geng, J.Z. Fan, Input-output networks considering graphlet-based analysis for production optimization: Application in ethylene plants, J. Clean. Prod. 278(2021) 123955. [10] N. Quirante, J. Javaloyes, J.A. Caballero, Rigorous design of distillation columns using surrogate models based on Kriging interpolation, AIChE J. 61(7) (2015) 2169–2187. [11] T. Keßler, C. Kunde, K. McBride, N. Mertens, D. Michaels, K. Sundmacher, A. Kienle, Global optimization of distillation columns using explicit and implicit surrogate models, Chem. Eng. Sci. 197(2019) 235–245. [12] I.E. Grossmann, L.T. Biegler, I.I. Part, Future Perspective on Optimization, Comput. Chem. Eng. 28(8) (2004) 1193–1218. [13] F.A.C. Viana, T.W. Simpson, V. Balabanov, V. Toropov, Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?, AIAA J 52(4) (2014) 670–690. [14] J.A. Caballero, D. Milán-Yañez, I.E. Grossmann, Rigorous design of distillation columns: integration of disjunctive programming and process simulators, Ind. Eng. Chem. Res. 44(17) (2005) 6760–6775. [15] R. Brunet, D. Cortés, G. Guillén-Gosálbez, L. Jiménez, D. Boer, Minimization of the LCA impact of thermodynamic cycles using a combined simulationoptimization approach, Appl. Therm. Eng. 48(2012) 367–377. [16] M.A. Navarro-Amorós, R. Ruiz-Femenia, J.A. Caballero, Integration of modular process simulators under the Generalized Disjunctive Programming framework for the structural flowsheet optimization, Comput. Chem. Eng. 67(2014) 13–25. [17] C.A. Muñoz López, D. Telen, P. Nimmegeers, L. Cabianca, F. Logist, J. van Impe, A process simulator interface for multiobjective optimization of chemical processes, Comput. Chem. Eng. 109(2018) 119–137. [18] A.W. Dowling, L.T. Biegler, A framework for efficient large scale equationoriented flowsheet optimization, Comput. Chem. Eng. 72(2015) 3–20. [19] Y.N. Ma, Z.J. Shao, X. Chen, L.T. Biegler, A parallel function evaluation approach for solution to large-scale equation-oriented models, Comput. Chem. Eng. 93(2016) 309–322. [20] Y.Z. Zhang, C.M. Masuku, L.T. Biegler, Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischertropsch processes, Energy Fuels 32(6) (2018) 7199–7209. [21] L.T. Biegler, I.E. Grossmann, A.W. Westerberg, Systematic Methods of Chemical Process Design, Upper Saddle River, Prentice Hall PTR, N.J, (1997). [22] C. Tsay, R.C. Pattison, M.R. Piana, M. Baldea, A survey of optimal process design capabilities and practices in the chemical and petrochemical industries, Comput. Chem. Eng. 112(2018) 180–189. [23] R.C. Pattison, M. Baldea, Equation-oriented flowsheet simulation and optimization using pseudo-transient models, AIChE J. 60(12) (2014) 4104–4123. [24] C.T. Kelley, D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal. 35(2) (1998) 508–523. [25] R.C. Pattison, C. Tsay, M. Baldea, Pseudo-transient models for multiscale, multiresolution simulation and optimization of intensified reaction/separation/recycle processes: Framework and a dimethyl ether production case study, Comput. Chem. Eng. 105(2017) 161–172. [26] C. Tsay, R.C. Pattison, M. Baldea, Equation-oriented simulation and optimization of process flowsheets incorporating detailed spiral-wound multistream heat exchanger models, AIChE J. 63(9) (2017) 3778–3789. [27] C. Tsay, R.C. Pattison, M. Baldea, A pseudo-transient optimization framework for periodic processes: Pressure swing adsorption and simulated moving bed chromatography, AIChE J. 64(8) (2018) 2982–2996. [28] Y.J. Ma, Y.Q. Luo, S. Zhang, X.G. Yuan, Simultaneous optimization of complex distillation systems and heat integration using pseudo-transient continuation models, Comput. Chem. Eng. 108(2018) 337–348. [29] F.G. Cui, C.T. Cui, J.S. Sun, Simultaneous optimization of heat-integrated extractive distillation with a recycle feed using pseudo transient continuation models, Ind. Eng. Chem. Res. 57(2018) 15423–15436, acs.iecr.8b02728. [30] T.S. Coffey, C.T. Kelley, D.E. Keyes, Pseudotransient continuation and differential-algebraic equations, SIAM J. Sci. Comput. 25(2) (2003) 553–569. [31] S. Widagdo, W.D. Seider, Journal review. Azeotropic distillation, AIChE J. 42(1) (1996) 96–130. [32] T.L. Wayburn, J.D. Seader, Homotopy continuation methods for computeraided process design, Comput. Chem. Eng. 11(1) (1987) 7–25. [33] I. Malinen, J. Tanskanen, Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies, Comput. Chem. Eng. 34(11) (2010) 1761–1774. [34] J. Asadi, F. Jalali Farahani, Optimization of dimethyl ether production process based on sustainability criteria using a homotopy continuation method, Comput. Chem. Eng. 115(2018) 161–178. [35] R.C. Pattison, A.M. Gupta, M. Baldea, Equation-oriented optimization of process flowsheets with dividing-wall columns, AIChE J. 62(3) (2016) 704–716. [36] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Equation-oriented optimization of reactive distillation systems using pseudo-transient models, Chem. Eng. Sci. 195(2019) 381–398. [37] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model, Ind. Eng. Chem. Res. 56(21) (2017) 6266–6274. [38] A. Rose, R.F. Sweeny, V.N. Schrodt, Continuous distillation calculations by relaxation method, Ind. Eng. Chem. 50(5) (1958) 737–740. [39] R.C. Pattison, M. Baldea, Multistream heat exchangers: Equation-oriented modeling and flowsheet optimization, AIChE J. 61(6) (2015) 1856–1866. [40] A. Kumar, T.F. Edgar, M. Baldea, Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field, Comput. Chem. Eng. 107(2017) 271–283. [41] A. Kumar, M. Baldea, T.F. Edgar, A physics-based model for industrial steammethane reformer optimization with non-uniform temperature field, Comput. Chem. Eng. 105(2017) 224–236. [42] C. Tsay, R.C. Pattison, Y. Zhang, G.T. Rochelle, M. Baldea, Rate-based modeling and economic optimization of next-generation amine-based carbon capture plants, Appl. Energy 252(2019) 113379. [43] K. Seo, C. Tsay, B. Hong, T.F. Edgar, M.A. Stadtherr, M. Baldea, Rate-based process optimization and sensitivity analysis for ionic-liquid-based postcombustion carbon capture, ACS Sustainable Chem. Eng. 8(27) (2020) 10242–10258. [44] K. Seo, C. Tsay, T.F. Edgar, M.A. Stadtherr, M. Baldea, Economic optimization of carbon capture processes using ionic liquids: toward flexibility in capture rate and feed composition, ACS Sustainable Chem. Eng. 9(13) (2021) 4823–4839. [45] M. Zanfir, M. Baldea, P. Daoutidis, Optimizing the catalyst distribution for countercurrent methane steam reforming in plate reactors, AIChE J. 57(9) (2011) 2518–2528. [46] Y.J. Ma, Y.Q. Luo, X. Ma, T. Yang, D.L. Chen, X.G. Yuan, Fast algorithms for equation-oriented flowsheet simulation and optimization using pseudotransient models, Ind. Eng. Chem. Res. 57(42) (2018) 14124–14142. [47] Y.J. Ma, M. McLaughlan, N. Zhang, J. Li, Novel feasible path optimisation algorithms using steady-state and/or pseudo-transient simulations, Comput. Chem. Eng. 143(2020) 107058. [48] A.W. Dowling, L.T. Biegler, Rigorous optimization-based synthesis of distillation cascades without integer variables, in: Computer Aided Chemical Engineering, Elsevier, Amsterdam, 2014. 55–60. [49] X. Ma, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Equation-oriented optimization of methanol distillation systems using pseudo-transient models, Comput. Chem. Eng. 127(2019) 218–232. [50] Y. Feng, X. Li, Y. Luo, Equation-Oriented Optimization of a Distillation Column Considering Stage Hydraulics, Ind. Eng. Chem. Res. 59(30) (2020) 13657–13668. [51] H.Z. Hou, Y.Q. Luo, A novel method for generating distillation configurations, Front. Chem. Sci. Eng. 14(5) (2020) 834–846. [52] Y.J. Ma, Z.K. Yang, A. El-Khoruy, N. Zhang, J. Li, B.J. Zhang, L. Sun, Simultaneous synthesis and design of reaction–separation–recycle processes using rigorous models, Ind. Eng. Chem. Res. 60(19) (2021) 7275–7290. [53] C. Tsay, R.C. Pattison, M. Baldea, A dynamic optimization approach to probabilistic process design under uncertainty, Ind. Eng. Chem. Res. 56(30) (2017) 8606–8621. [54] C. Tsay, M. Baldea, Scenario-free optimal design under uncertainty of the PRICO natural gas liquefaction process, Ind. Eng. Chem. Res. 57(17) (2018) 5868–5880. [55] Y.J. Ma, N. Zhang, J. Li, C.W. Cao, Optimal design of extractive dividing-wall column using an efficient equation-oriented approach, Front. Chem. Sci. Eng. 15(1) (2021) 72–89. [56] C. Tsay, M. Baldea, Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds, Comput. Methods Appl. Mech. Eng. 348(2019) 935–953. |