[1] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science 333(6043) (2011) 712–717. [2] B. van der Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination 143(3) (2002) 207–218. [3] T.S. Chung, D.L. Zhao, J. Gao, K.J. Lu, C.F. Wan, M. Weber, C. Maletzko, Emerging R&D on membranes and systems for water reuse and desalination, Chin. J. Chem. Eng. 27(7) (2019) 1578–1585. [4] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science 356(6343) (2017) eaab0530. [5] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15) (2015) 5016–5030. [6] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(6154) (2013) 95–98. [7] K.C. Guan, G.P. Liu, H. Matsuyama, W.Q. Jin, Graphene-based membranes for pervaporation processes, Chin. J. Chem. Eng. 28(7) (2020) 1755–1766. [8] L. Chen, G.S. Shi, J. Shen, B.Q. Peng, B.W. Zhang, Y.Z. Wang, F.G. Bian, J.J. Wang, D.Y. Li, Z. Qian, G. Xu, G.P. Liu, J.R. Zeng, L.J. Zhang, Y.Z. Yang, G.Q. Zhou, M.H. Wu, W.Q. Jin, J.Y. Li, H.P. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(7676) (2017) 380–383. [9] Y. Liu, Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation, Chin. J. Chem. Eng. 27(6) (2019) 1257–1271. [10] J. Shen, G.P. Liu, Y. Han, W.Q. Jin, Artificial channels for confined mass transport at the sub-nanometre scale, Nat. Rev. Mater. 6(4) (2021) 294–312. [11] T. Zheng, X.Y. Zou, M.S. Li, S.Y. Zhou, Y.J. Zhao, Z.X. Zhong, Two-dimensional graphitic carbon nitride for membrane separation, Chin. J. Chem. Eng. (2021), in press. [12] K.K. Fong, I.S. Tan, H.C.Y. Foo, M.K. Lam, A.C.Y. Tiong, S. Lim, Optimization and evaluation of reduced graphene oxide hydrogel composite as a demulsifier for heavy crude oil-in-water emulsion, Chin. J. Chem. Eng. 33(2021) 297–305. [13] M.D. Wang, W.X. Guo, Z.Y. Jiang, F.S. Pan, Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization, Chin. J. Chem. Eng. 28(4) (2020) 1039–1045. [14] C.N. Yeh, K. Raidongia, J.J. Shao, Q.H. Yang, J.X. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2) (2014) 166–170. [15] S.X. Zheng, Q.S. Tu, J.J. Urban, S.F. Li, B.X. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms, ACS Nano 11(6) (2017) 6440–6450. [16] L. Ding, L.B. Li, Y.C. Liu, Y. Wu, Z. Lu, J.J. Deng, Y.Y. Wei, J. Caro, H.H. Wang, Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater, Nat. Sustain. 3(4) (2020) 296–302. [17] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol. 12(6) (2017) 546–550. [18] W.S. Hung, C.H. Tsou, M. de Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(9) (2014) 2983–2990. [19] Y. Zhang, S. Zhang, T.S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration, Environ. Sci. Technol. 49(16) (2015) 10235–10242. [20] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37) (2011) 4248–4253. [21] J. Shen, G.Z. Liu, Y.F. Ji, Q. Liu, L. Cheng, K.C. Guan, M.C. Zhang, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater. 28(31) (2018) 1801511. [22] C.G. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Chargeand size-selective ion sieving through Ti3C2Tx MXene membranes, J. Phys. Chem. Lett. 6(20) (2015) 4026–4031. [23] L.Z. Huang, L. Ding, H.H. Wang, MXene-based membranes for separation applications, Small Sci. 1(7) (2021) 2100013. [24] T. Liu, X.Y. Liu, N. Graham, W.Z. Yu, K.N. Sun, Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance, J. Membr. Sci. 593(2020) 117431. [25] G. Liu, S. Liu, K. Ma, H. Wang, X. Wang, G. Liu, W. Jin, Polyelectrolyte Functionalized Ti2CTx MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures, Ind. Eng. Chem. Res. 59(2020) 4732–4741. [26] J. Li, X. Li, B. van der Bruggen, An MXene-based membrane for molecular separation, Environ. Sci.: Nano 7(5) (2020) 1289–1304. [27] G.Z. Liu, J. Shen, Y.F. Ji, Q. Liu, G.P. Liu, J. Yang, W.Q. Jin, Two-dimensional Ti2CTx-MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration, J. Mater. Chem. A 7(19) (2019) 12095–12104. [28] J. Wang, Z.J. Zhang, J.N. Zhu, M.T. Tian, S.C. Zheng, F.D. Wang, X.D. Wang, L. Wang, Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing, Nat. Commun. 11(1) (2020) 3540. [29] Z. Lu, Y. Wei, J. Deng, L. Ding, Z.K. Li, H. Wang, Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion, ACS Nano 13(9) (2019) 10535–10544. [30] B.C. Meng, G.Z. Liu, Y.Y. Mao, F. Liang, G.P. Liu, W.Q. Jin, Fabrication of surfacecharged MXene membrane and its application for water desalination, J. Membr. Sci. 623(2021) 119076. [31] L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang, J. Xue, L.X. Ding, S.Q. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9(1) (2018) 155. [32] G.Z. Liu, J. Shen, Q. Liu, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, Ultrathin twodimensional MXene membrane for pervaporation desalination, J. Membr. Sci. 548(2018) 548–558. [33] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Angew. Chem. Int. Ed. Engl. 56(7) (2017) 1825–1829. [34] X.Y. Tan, S.M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membr. Sci. 188(1) (2001) 87–95. [35] Y.Q. Sun, S.L. Li, Y.X. Zhuang, G.Z. Liu, W.H. Xing, W.H. Jing, Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection, J. Membr. Sci. 591(2019) 117350. [36] J. Li, Y. Labreche, N.X. Wang, S.L. Ji, Q.F. An, PDMS/ZIF-8 coating polymeric hollow fiber substrate for alcohol permselective pervaporation membranes, Chin. J. Chem. Eng. 27(10) (2019) 2376–2382. [37] Z. Xu, Y.Q. Sun, Y.X. Zhuang, W.H. Jing, H. Ye, Z.F. Cui, Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes, J. Membr. Sci. 564(2018) 35–43. [38] Y.Q. Sun, Z. Xu, Y.X. Zhuang, G.Z. Liu, W.Q. Jin, G.P. Liu, W.H. Jing, Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content, 2D Mater. 5(4) (2018) 045003. [39] K. Qu, L.H. Dai, Y.S. Xia, Y.X. Wang, D.Z. Zhang, Y.L. Wu, Z.Z. Yao, K. Huang, X.H. Guo, Z. Xu, Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation, J. Membr. Sci. 638(2021) 119669. [40] Y.Y. Fan, J.Y. Li, S.D. Wang, X.X. Meng, Y. Jin, N.T. Yang, B. Meng, J.Q. Li, S.M. Liu, Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation, Front. Chem. Sci. Eng. 15(4) (2021) 882–891. [41] G.Z. Liu, L. Cheng, G.N. Chen, F. Liang, G.P. Liu, W.Q. Jin, Pebax-based membrane filled with two-dimensional mxene nanosheets for efficient CO2 capture, Chem. Asian J. 15(15) (2020) 2364–2370. [42] Z. Xu, G.Z. Liu, H. Ye, W.Q. Jin, Z.F. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563(2018) 625–632. [43] A.K. Shukla, J. Alam, M. Alhoshan, L. Arockiasamy Dass, F.A.A. Ali, U. Mishra, M. A. Ansari, Removal of heavy metal ions using a carboxylated graphene oxideincorporated polyphenylsulfone nanofiltration membrane, Environ. Sci.: Water Res. Technol. 4(3) (2018) 438–448. [44] M.C. Zhang, K.C. Guan, Y.F. Ji, G.P. Liu, W.Q. Jin, N.P. Xu, Controllable ion transport by surface-charged graphene oxide membrane, Nat. Commun. 10(1) (2019) 1253. [45] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516(7529) (2014) 78–81. [46] A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes, Adv. Electron. Mater. 2(12) (2016) 1600255. [47] M.P. Jian, R.S. Qiu, Y. Xia, J. Lu, Y. Chen, Q.F. Gu, R.P. Liu, C.Z. Hu, J.H. Qu, H.T. Wang, X.W. Zhang, Ultrathin water-stable metal-organic framework membranes for ion separation, Sci. Adv. 6(23) (2020) eaay3998. [48] J. Schaep, B. van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol. 14(1–3) (1998) 155–162. [49] C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X.H. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes), Chem. Mater. 29(11) (2017) 4848–4856. |