[1] J. Yu, L.S. Sun, C. Ma, Y. Qiao, H. Yao, Thermal degradation of PVC:A review, Waste Manag 48 (2016) 300-314 [2] W.H. Cheung, V.K. Lee, G. McKay, Minimizing dioxin emissions from integrated MSW thermal treatment, Environ Sci Technol 41 (6) (2007) 2001-2007 [3] Y.J. Tang, Q.X. Huang, K. Sun, Y. Chi, J.H. Yan, Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic, Bioresour Technol 249 (2018) 16-23 [4] P. Lu, Q.X. Huang, A.C. (Thanos) Bourtsalas, Y. Chi, J.H. Yan, Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride, Fuel 230 (2018) 359-367 [5] S.R. Wang, G.X. Dai, H.P. Yang, Z.Y. Luo, Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review, Prog. Energy Combust. Sci. 62 (2017) 33-86 [6] E. Önal, B.B. Uzun, A.E. Pütün, Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene, Energy Convers. Manag. 78 (2014) 704-710 [7] L.M. Zhou, Y.P. Wang, Q.W. Huang, J.Q. Cai, Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis, Fuel Process. Technol. 87 (11) (2006) 963-969 [8] W.M. Chen, S.K. Shi, J. Zhang, M.Z. Chen, X.Y. Zhou, Co-pyrolysis of waste newspaper with high-density polyethylene:Synergistic effect and oil characterization, Energy Convers. Manag. 112 (2016) 41-48 [9] V.I. Sharypov, N.G. Beregovtsova, B.N. Kuznetsov, V.L. Cebolla, S. Collura, G. Finqueneisel, T. Zimny, J.V. Weber, Influence of reaction parameters on brown coal-polyolefinic plastic co-pyrolysis behavior, J. Anal. Appl. Pyrolysis 78 (2) (2007) 257-264 [10] T. Murakami, T. Suda, S. Mouri, J. Shigeta, T. Hirata, T. Fujimori, W.G. Huang, Co-gasification of sewage sludge and plastic wastes:Evaluation of experiment and application, J. Jpn. Inst. Energy 85 (12) (2006) 964-970 [11] G. Mauviel, M. Guillain, F. Kies, K. Fairouz, M.S. René, S.R. Mar, M. Ferrer, F. Monique, J. Lédé, L. Jacques, Attrition-free pyrolysis to produce bio-oil and char, Bioresour Technol 100 (23) (2009) 6069-6075 [12] A. Oasmaa, S. Czernik, Fuel oil quality of biomass pyrolysis oils state of the art for the end users, Energy Fuels 13 (4) (1999) 914-921 [13] E. Salehi, J. Abedi, T. Harding, Bio-oil from sawdust:Pyrolysis of sawdust in a fixed-bed system, Energy Fuels 23 (7) (2009) 3767-3772 [14] A.V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem. 30 (12) (1999) 1479-1493 [15] P.Y. Qi, G.Z. Chang, H.C. Wang, X.L. Zhang, Q.J. Guo, Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5, J. Anal. Appl. Pyrolysis 136 (2018) 178-185 [16] Y. Xue, A. Kelkar, X.L. Bai, Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer, Fuel 166 (2016) 227-236 [17] J. Wang, B. Zhang, Z.P. Zhong, K. Ding, A.D. Deng, M. Min, P. Chen, R. Ruan, Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5:Analytical PY-GC/MS study, Energy Convers. Manag. 139 (2017) 222-231 [18] H.L. Chiang, K.H. Lin, N.N. Lai, Z.X. Shieh, Element and PAH constituents in the residues and liquid oil from biosludge pyrolysis in an electrical thermal furnace, Sci Total Environ 481 (2014) 533-541 [19] R. French, S. Czernik, Catalytic pyrolysis of biomass for biofuels production, Fuel Process. Technol. 91 (1) (2010) 25-32 [20] C.A. Mullen, A.A. Boateng, Catalytic pyrolysis-GC/MS of lignin from several sources, Fuel Process. Technol. 91 (11) (2010) 1446-1458 [21] X.S. Zhang, H.W. Lei, S.L. Chen, J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers:A critical review, Green Chem. 18 (15) (2016) 4145-4169 [22] S.S. Lam, A.D. Russell, C.L. Lee, S.K. Lam, H.A. Chase, Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil, Int. J. Hydrog. Energy 37 (6) (2012) 5011-5021 [23] H.Y. Zhang, Y.T. Cheng, T.P. Vispute, R. Xiao, G.W. Huber, Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5:The hydrogen to carbon effective ratio, Energy Environ. Sci. 4 (6) (2011) 2297 [24] H.W. Ryu, H.W. Lee, J. Jae, Y.K. Park, Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons:Effect of magnesium oxide catalyst, Energy 179 (2019) 669-675 [25] N. Chen, T. Degnan, L. Koenig, Liquid fuel from carbohydrates, Chemtech 16 (1986) 506-511 [26] B. Valle, B. Aramburu, C. Santiviago, J. Bilbao, A.G. Gayubo, Upgrading of bio-oil in a continuous process with dolomite catalyst, Energy Fuels 28 (10) (2014) 6419-6428 [27] S. Czernik, A.V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy Fuels 18 (2) (2004) 590-598 [28] M.H.M. Ahmed, N. Batalha, H.M.D. Mahmudul, G. Perkins, M. Konarova, A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock:Insights into synergistic effect, catalyst development and reaction mechanism, Bioresour Technol 310 (2020) 123457 [29] H.W. Ryu, D.H. Kim, J. Jae, S.S. Lam, E.D. Park, Y.K. Park, Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresour Technol 310 (2020) 123473 [30] B. Zhang, Z.P. Zhong, M. Min, K. Ding, Q.L. Xie, R. Ruan, Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics:Analytical Py-GC/MS study, Bioresour Technol 189 (2015) 30-35 [31] E. Jakab, G. Várhegyi, O. Faix, Thermal decomposition of polypropylene in the presence of wood-derived materials, J. Anal. Appl. Pyrolysis 56 (2) (2000) 273-285 [32] B.B. Uzoejinwa, X.H. He, S. Wang, A. El-Fatah Abomohra, Y.M. Hu, Q. Wang, Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production:Recent progress and future directions elsewhere worldwide, Energy Convers. Manag. 163 (2018) 468-492 [33] Y.J. Guan, Y. Ma, K. Zhang, H.G. Chen, G. Xu, W.Y. Liu, Y.P. Yang, Co-pyrolysis behaviors of energy grass and lignite, Energy Convers. Manag. 93 (2015) 132-140 [34] P.J. de Wild, H. den Uil, J.H. Reith, A. Lunshof, C. Hendriks, E.R.H. van Eck, E.J. Heeres, Bioenergy II:Biomass valorisation by a hybrid thermochemical fractionation approach, Int. J. Chem. React. Eng. 7(1) (2009) A51-1-A51-27. [35] A.Q. Zheng, Z.L. Zhao, S. Chang, Z. Huang, F. He, H.B. Li, Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass, Energy Fuels 26 (5) (2012) 2968-2974 [36] J.J. Meng, J. Park, D. Tilotta, S. Park, The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil, Bioresour Technol 111 (2012) 439-446 [37] W. Yan, T.C. Acharjee, C.J. Coronella, V.R. Vasquez, Thermal pretreatment of lignocellulosic biomass, Environ. Prog. Sustainable Energy, 28 (2009) 435-440 [38] H.Y. Zhang, P.K.W. Likun, R. Xiao, Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout, Sci Total Environ 618 (2018) 151-156 [39] J. Wang, Z.P. Zhong, K. Ding, M. Li, N.J. Hao, X.Z. Meng, R. Ruan, A.J. Ragauskas, Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system, Energy Convers. Manag. 180 (2019) 60-71 [40] K. Ding, Z.P. Zhong, J. Wang, B. Zhang, L.L. Fan, S.Y. Liu, Y.P. Wang, Y.H. Liu, D.X. Zhong, P. Chen, R. Ruan, Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5, Bioresour Technol 261 (2018) 86-92 [41] B. Acharya, I. Sule, A. Dutta, A review on advances of torrefaction technologies for biomass processing, Biomass Convers. Biorefinery 2 (4) (2012) 349-369 [42] M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels:A review, Biomass Bioenergy 35 (9) (2011) 3748-3762 [43] Q.V. Bach, Ø. Skreiberg, Upgrading biomass fuels via wet torrefaction:A review and comparison with dry torrefaction, Renew. Sustain. Energy Rev. 54 (2016) 665-677 [44] J. Shankar Tumuluru, S. Sokhansanj, J.R. Hess, C.T. Wright, R.D. Boardman, REVIEW:A review on biomass torrefaction process and product properties for energy applications, Ind. Biotechnol. 7 (5) (2011) 384-401 [45] T.R. Carlson, G.A. Tompsett, W.C. Conner, G.W. Huber, Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks, Top. Catal. 52 (3) (2009) 241-252 [46] H.P. Yang, R. Yan, H.P. Chen, C.G. Zheng, D.H. Lee, D.T. Liang, In-depth investigation of biomass pyrolysis based on three major components:Hemicellulose, cellulose and lignin, Energy Fuels 20 (1) (2006) 388-393 [47] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today 41 (1-3) (1998) 207-219 [48] S. Kelkar, C.M. Saffron, K. Andreassi, Z.L. Li, A. Murkute, D.J. Miller, T.J. Pinnavaia, R.M. Kriegel, A survey of catalysts for aromatics from fast pyrolysis of biomass, Appl. Catal. B:Environ. 174-175 (2015) 85-95 [49] G. Fogassy, N. Thegarid, Y. Schuurman, C. Mirodatos, From biomass to bio-gasoline by FCC co-processing:Effect of feed composition and catalyst structure on product quality, Energy Environ. Sci. 4 (12) (2011) 5068 [50] X. Xin, S.S. Pang, F. de Miguel Mercader, K.M. Torr, The effect of biomass pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal component analysis, J. Anal. Appl. Pyrolysis 138 (2019) 145-153 [51] B.J. McGrattan, Examining the decomposition of ethylene-vinyl acetate copolymers using TG/GC/IR, Appl. Spectrosc. 48 (12) (1994) 1472-1476 |