[1] W.X. Guo, C.Y. Zhu, T.T. Fu, Y.G. Ma, Coalescence dynamics of two droplets of different viscosities in T-junction microchannel with a funnel-typed expansion chamber, Chin. J. Chem. Eng. (2021) (in press) [2] C.Q. Yao, H.Y. Ma, Q.K. Zhao, Y.Y. Liu, Y.C. Zhao, G.W. Chen, Mass transfer in liquid-liquid Taylor flow in a microchannel:Local concentration distribution, mass transfer regime and the effect of fluid viscosity, Chem. Eng. Sci. 223 (2020) 115734 [3] S.H. Shen, Y.G. Ma, S.M. Lu, C.Y. Zhu, An unsteady heterogeneous mass transfer model for gas absorption enhanced by dispersed third phase droplets, Chin. J. Chem. Eng. 17 (4) (2009) 602-607 [4] P. Xie, K. Wang, J. Deng, G.S. Luo, Continuous, homogeneous and rapid synthesis of 4-bromo-3-methylanisole in a modular microreaction system, Chin. J. Chem. Eng. 28 (8) (2020) 2092-2098 [5] Z.F. Yan, J.X. Tian, K. Wang, K.D.P. Nigam, G.S. Luo, Microreaction processes for synthesis and utilization of epoxides:a review, Chem. Eng. Sci. 229 (2021) 116071 [6] K. Wang, L.M. Zhang, W.L. Zhang, G.S. Luo, Mass-transfer-controlled dynamic interfacial tension in microfluidic emulsification processes, Langmuir 32 (13) (2016) 3174-3185 [7] A.M. Nightingale, T.W. Phillips, J.H. Bannock, J.C. de Mello, Controlled multistep synthesis in a three-phase droplet reactor, Nat Commun 5 (2014) 3777 [8] X.H. Ge, H. Zhao, T. Wang, J. Chen, J.H. Xu, G.S. Luo, Microfluidic technology for multiphase emulsions morphology adjustment and functional materials preparation, Chin. J. Chem. Eng. 24 (6) (2016) 677-692 [9] S. Goyal, M.R. Thorson, G.G.Z. Zhang, Y.C. Gong, P.J.A. Kenis, Microfluidic approach to cocrystal screening of pharmaceutical parent compounds, Cryst. Growth Des. 12 (12) (2012) 6023-6034 [10] G. Pascali, P. Watts, P.A. Salvadori, Microfluidics in radiopharmaceutical chemistry, Nucl Med Biol 40 (6) (2013) 776-787 [11] G.M. Whitesides, The origins and the future of microfluidics, Nature 442 (7101) (2006) 368-373 [12] T.C. Chang, A.M. Mikheev, W. Huynh, R.J. Monnat, R.C. Rostomily, A. Folch, Parallel microfluidic chemosensitivity testing on individual slice cultures, Lab Chip 14 (23) (2014) 4540-4551 [13] J.H. Xu, S.W. Li, W.J. Lan, G.S. Luo, Microfluidic approach for rapid interfacial tension measurement, Langmuir 24 (19) (2008) 11287-11292 [14] B. Zheng, L.S. Roach, R.F. Ismagilov, Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J Am Chem Soc 125 (37) (2003) 11170-11171 [15] D. Changpeng, C. White, Interfacial tension measurement in fluid-fluid systems, Encyclopedia of Surface and Colloid Science:Second Fdition (2006) 2966-2980. Retrieved from http://www.informaworld.com/10.1081/E-ESCS-120000636. [16] Y.J. Cui, Y.K. Li, K. Wang, J. Deng, G.S. Luo, Determination of dynamic interfacial tension during the generation of tiny droplets in the liquid-liquid jetting flow regime, Langmuir 36 (45) (2020) 13633-13641 [17] J.K. Nunes, S.S. Tsai, J. Wan, H.A. Stone, Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis, J Phys D Appl Phys 46 (11) (2013) 114002 [18] P. Garstecki, H.A. Stone, G.M. Whitesides, Mechanism for flow-rate controlled breakup in confined geometries:a route to monodisperse emulsions, Phys Rev Lett 94 (16) (2005) 164501 [19] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (3) (2006) 437-446 [20] J.H. Xu, S.W. Li, J. Tan, Y.J. Wang, G.S. Luo, Preparation of highly monodisperse droplet in a T-junction microfluidic device, AIChE J. 52 (9) (2006) 3005-3010 [21] J. Tan, J.H. Xu, S.W. Li, G.S. Luo, Drop dispenser in a cross-junction microfluidic device:Scaling and mechanism of break-up, Chem. Eng. J. 136 (2-3) (2008) 306-311 [22] S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using "flow focusing" in microchannels, Appl. Phys. Lett. 82 (3) (2003) 364-366 [23] A.G. Marín, F. Campo-Cortés, J.M. Gordillo, Generation of micron-sized drops and bubbles through viscous coflows, Colloids Surfaces A:Physicochem. Eng. Aspects 344 (1-3) (2009) 2-7 [24] Link DR, Anna SL, Weitz DA, Stone HA, Geometrically mediated breakup of drops in microfluidic devices, Phys Rev Lett 92 (5) (2004) 054503 [25] T. Glawdel, C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects, Phys Rev E Stat Nonlin Soft Matter Phys 86 (2 Pt 2) (2012) 026308 [26] Q. Brosseau, J. Vrignon, J.C. Baret, Microfluidic dynamic interfacial tensiometry (μDIT), Soft Matter 10 (17) (2014) 3066-3076 [27] Y.G. Ma, X.Y. Ji, D.J. Wang, T.T. Fu, C.Y. Zhu, Measurement and correlation of pressure drop for gas-liquid two-phase flow in rectangular microchannels, Chin. J. Chem. Eng. 18 (6) (2010) 940-947 [28] L. Sheng, Y.C. Chen, K. Wang, J. Deng, G.S. Luo, General rules of bubble formation in viscous liquids in a modified step T-junction microdevice, Chem. Eng. Sci. 239 (2021) 116621 [29] S. D. Hudson, J. T. Cabral, W. J. Goodrum, K. L. Beers, E. J. Amis, Microfluidic interfacial tensiometry,Appl. Phys.Lett.87(8)(2005) 081905 [30] N.-T. Nguyen, S. Lassemono, F. A.C. Yang. Chollet, Microfluidic sensor for dynamic surface tension measurement, IEE Proc. Nanobiotechnol. 153 (4) (2006) 102-106 [31] N.T. Nguyen, S. Lassemono, F.A. Chollet, C. Yang, Microfluidic sensor for dynamic surface tension measurement, IEE Proc Nanobiotechnol 153 (4) (2006) 102-106 [32] X.Y. Wang, A. Riaud, K. Wang, G.S. Luo, Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel, Microfluid. Nanofluidics 18 (3) (2015) 503-512 [33] K. Wang, Y.C. Lu, J.H. Xu, G.S. Luo, Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process, Langmuir 25 (4) (2009) 2153-2158 [34] S.W. Li, J.H. Xu, Y.J. Wang, G.S. Luo, A new interfacial tension measurement method through a pore array micro-structured device, J. Colloid Interface Sci. 331 (1) (2009) 127-131 [35] W.J. Lan, C. Wang, X.Q. Guo, S.W. Li, G.S. Luo, Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process, AIChE J. 62 (7) (2016) 2542-2549 [36] Y.C. Chao, H.C. Shum, Emerging aqueous two-phase systems:from fundamentals of interfaces to biomedical applications, Chem. Soc. Rev. 49 (1) (2020) 114-142 [37] Y.K. Li, G.T. Liu, J.H. Xu, K. Wang, G.S. Luo, A microdevice for producing monodispersed droplets under a jetting flow, RSC Adv. 5 (35) (2015) 27356-27364 [38] C.F. Zhou, P.T. Yue, J.J. Feng, Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18 (9) (2006) 092105 [39] C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59 (15) (2004) 3045-3058 [40] P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16 (2) (2000) 347-351 [41] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys Rev Lett 86 (18) (2001) 4163-4166 [42] Xu JH, Luo GS, Li SW, Chen GG, Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties, Lab Chip 6 (1) (2006) 131-136 [43] J. Husny, J.J. Cooper-White, The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech. 137 (1-3) (2006) 121-136 [44] S.N. Ghadiali, D.P. Gaver, The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube, J. Fluid Mech. 478 (2003) 165-196 [45] W.L. Ong, J.S. Hua, B.L. Zhang, T.Y. Teo, J.L. Zhuo, N.T. Nguyen, N. Ranganathan, L. Yobas, Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry, Sensor Actuat. A:Phys. 138 (1) (2007) 203-212 [46] K. Wang, Y.C. Lu, C.P. Tostado, L. Yang, G.S. Luo, Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control, Chem. Eng. J. 227 (2013) 90-96 |