[1] R.E. Oosterbroek, B.V.D. A, Lab-on-a-chip; miniaturized systems for (BIO)chemical analysis and synthesis, Elsevier B.V.,Amsterdam(2003) [2] Y. Tian, X.Y. Chen, S. Zhang, Numerical study on bilateral Koch fractal baffles micromixer, Microgravity Sci. Technol. 31 (6) (2019) 833-843 [3] Mross S, Pierrat S, Zimmermann T, Kraft M, Microfluidic enzymatic biosensing systems:A review, Biosens Bioelectron 70 (2015) 376-391 [4] G.H.W. Sanders, A. Manz, Chip-based microsystems for genomic and proteomic analysis, Trac Trends Anal. Chem. 19 (6) (2000) 364-378 [5] J. Wen, C. Guillo, J.P. Ferrance, J.P. Landers, Microfluidic-based DNA purification in a two-stage, dual-phase microchip containing a reversed-phase and a photopolymerized monolith, Anal. Chem. 79 (16) (2007) 6135-6142 [6] Q.S. Pu, J. Yun, H. Temkin, S.R. Liu, Ion-enrichment and ion-depletion effect of nanochannel structures, Nano Lett. 4 (6) (2004) 1099-1103 [7] R.M. Nakamura, W.W. Grody, J.T. Wu, and R.B. Nagle, Cancer Diagnostics Current and Future Trends. Humana Press, New York, 2004 [8] X.Y. Chen, Y. Tian, Passive micromixer with baffles distributed on both sides of microchannels based on the Koch fractal principle, J. Chem. Technol. Biotechnol. 95 (3) (2020) 806-812 [9] S.C. Wang, H.H. Wei, H.P. Chen, M.H. Tsai, C.C. Yu, H.C. Chang, Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes, Biomicrofluidics 2 (1) (2008) 14102 [10] C.C. Chang, R.J. Yang, Electrokinetic mixing in microfluidic systems, Microfluid. Nanofluidics 3 (5) (2007) 501-525 [11] S.C. Wang, H.P. Chen, C.Y. Lee, C.C. Yu, H.C. Chang, AC electro-osmotic mixing induced by non-contact external electrodes, Biosens Bioelectron 22 (4) (2006) 563-567 [12] A.O. El Moctar, N. Aubry, J. Batton, Electro-hydrodynamic micro-fluidic mixer, Lab Chip 3 (4) (2003) 273-280 [13] M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, Electrokinetic instability micromixing, Anal Chem 73 (24) (2001) 5822-5832 [14] Ramos, H. Morgan, N.G. Green, A. Castellanos, Ac electrokinetics:A review of forces in microelectrode structures, J. Phys. D:Appl. Phys. 31 (18) (1998) 2338-2353 [15] R.J. Yang, C.H. Wu, T.I. Tseng, S.B. Huang, G.B. Lee, Enhancement of electrokinetically-driven flow mixing in microchannel with added side channels, Jpn. J. Appl. Phys. 44 (10) (2005) 7634-7642 [16] S.C. Wang, Y.W. Lai, Y.X. Ben, H.C. Chang, Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows, Ind. Eng. Chem. Res. 43 (12) (2004) 2902-2911 [17] D.A. Saville, Electrohydrodynamics:The Taylor-melcher leaky dielectric model, Annu. Rev. Fluid Mech. 29 (1) (1997) 27-64 [18] C.H. Chen, H. Lin, S.K. Lele, J.G. Santiago, Convective and absolute electrokinetic instability with conductivity gradients, J. Fluid Mech. 524 (2005) 263-303 [19] A. Varshney, S. Ghosh, S. Bhattacharya, A. Yethiraj, Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics, Sci Rep 2 (2012) 738 [20] S.M. Shin, I.S. Kang, Y.K. Cho, Mixing enhancement by using electrokinetic instability under time-periodic electric field, J. Micromech. Microeng. 15 (3) (2005) 455-462 [21] G.R. Wang, F. Yang, W. Zhao, There can be turbulence in microfluidics at low Reynolds number, Lab Chip 14 (8) (2014) 1452-1458 [22] G.R. Wang, F. Yang, W. Zhao, C.P. Chen, On micro-electrokinetic scalar turbulence in microfluidics at a low Reynolds number, Lab Chip 16 (6) (2016) 1030-1038 [23] L.B. Zhang, A. Beatty, L. Lu, A. Abdalrahman, T.M. Makris, G.R. Wang, Q. Wang, Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles, Mater Sci Eng C Mater Biol Appl 111 (2020) 110768 [24] Z.Y. Hu, T.Y. Zhao, W. Zhao, F. Yang, H.X. Wang, K.G. Wang, J.T. Bai, G.R. Wang, Transition from periodic to chaotic AC electroosmotic flows near electric double layer, AIChE J. 67 (4) (2021) e17148 [25] Z.Y. Hu, T.Y. Zhao, H.X. Wang, W. Zhao, K.G. Wang, J.T. Bai, G.R. Wang, Asymmetric temporal variation of oscillating AC electroosmosis with a steady pressure-driven flow, Exp. Fluids 61 (11) (2020) 233 [26] K. Horiuchi, P. Dutta, Joule heating effects in electroosmotically driven microchannel flows, Int. J. Heat Mass Transf. 47 (14-16) (2004) 3085-3095 [27] B. Kirby, Preface. Micro- and Nanoscale Fluid Mechanics. Cambridge University Press, Cambridge, 2010 [28] Barron J.J., Ashton C., The effect of temperature on conductivity measurement, IEEE Transactions on Signal Processing 7 (3) (2005) 1-5 [29] N.G. Green, A. Ramos, A. González, A. Castellanos, H. Morgan, Electrothermally induced fluid flow on microelectrodes, J. Electrost. 53 (2) (2001) 71-87 [30] A. Salari, M. Navi, T. Lijnse, C. Dalton, AC electrothermal effect in microfluidics:A review, Micromachines (Basel) 10 (11) (2019) E762 [31] D. Lohse, K.Q. Xia, Small-scale properties of turbulent Rayleigh-bénard convection, Annu. Rev. Fluid Mech. 42 (1) (2010) 335-364 |