[1] J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, D. Blake, Renewable hydrogen production, Int. J. Energy Res. 32 (5) (2008) 379-407 [2] A. Demirbas, Future hydrogen economy and policy, Energy Sources Part B:Econ. Plan. Policy 12 (2) (2017) 172-181 [3] B.L. Dou, H. Zhang, G.M. Cui, M.X. He, C.J. Ruan, Z.L. Wang, H.S. Chen, Y.J. Xu, B. Jiang, C.F. Wu, Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature, Energy 167 (2019) 1097-1106 [4] B.L. Dou, H. Zhang, Y.C. Song, L.F. Zhao, B. Jiang, M.X. He, C.J. Ruan, H.S. Chen, Y.J. Xu, Hydrogen production from the thermochemical conversion of biomass:issues and challenges, Sustain. Energy Fuels 3 (2) (2019) 314-342 [5] B.L. Dou, Y.C. Song, C. Wang, H.S. Chen, Y.J. Xu, Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol:Issues and challenges, Renew. Sustain. Energy Rev. 30 (2014) 950-960 [6] C. A. Schwengber, H. J. Alves, R. A. Schaffner, F. A. da Silva, R. Sequinel, V. R. Bach, R. J. Ferracin, Overview of glycerol reforming for hydrogen production, Renewable Sustainable Energy Rev., 58 (2016) 259-266 [7] X.H. Fan, R. Burton, Y.C. Zhou, Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals-Mini review, Renew Open Fuels Energy Sci. J. Sustain 3 (2010) 17-22 [8] P. Dauenhauer, J. Salge, L. Schmidt, Renewable hydrogen by autothermal steam reforming of volatile carbohydrates, J. Catal. 244 (2) (2006) 238-247 [9] S. Chan, D. Hoang, O. Ding, Transient performance of an autothermal reformer-A 2-D modeling approach, Int. J. Heat Mass Transfer, 48 (19) (2005) 4205-4214 [10] H.Y. Tang, J. Greenwood, P. Erickson, Modeling of a fixed-bed copper-based catalyst for reforming methanol:Steam and autothermal reformation, Int. J. Hydrog. Energy 40 (25) (2015) 8034-8050 [11] A. Abdul Ghani, Hydrogen Production by the Catalytic Auto-Thermal Reforming of Synthetic Crude Glycerol in a Packed Bed Tubular Reactor, Masters Thesis, University of Regina, Saskatchewan, 2014. [12] G.F. Froment, J. De Wilde, K.B. Bischoff, Chemical Reactor Analysis and Design. (3rd ed.), John Wiley & Sons, New Jersey, 2011. [13] J. Petera, L. Nowicki, S. Ledakowicz, New numerical algorithm for solving multidimensional heterogeneous model of the fixed bed reactor, Chem. Eng. J. 214 (2013) 237-246 [14] O. Levenspiel, Chemical Reaction Engineering. (3rd ed.), John Wiley & Sons, New Jersey, 1999. [15] D. Scognamiglio, Hydrogen as Energy Carrier:Decentralized Production by Autothermal Reforming of Methane, PhD.Thesis, Università degli Studi di Napoli Federico II, Italy, 2008. [16] Y. He, Simulation Studies on a Non-Isothermal, Nonadiabatic, Fixed-Bed Reactor, PhD.Thesis, University of Kansas, Kansas, 2003. [17] F. Allain, Evaluation of the Classical Reaction Engineering Models in Terms of Mass Transport and Reaction Rate Distribution for Low Tube-to-Particle Diameter Ratio Beds. Worcester Polytechnic Institute, Masters Thesis, Worcester Polytechnic Institute, Massachusetts, 2011. [18] E. Afabor, A. Salama, H. Ibrahim, Packed bed reactor modeling of the catalytic auto-thermal reforming of synthetic crude glycerol, J. Environ. Chem. Eng. 5 (5) (2017) 4850-4857 [19] J.H. Ghouse, T.A. AdamsII, A multi-scale dynamic two-dimensional heterogeneous model for catalytic steam methane reforming reactors, Int. J. Hydrog. Energy 38 (24) (2013) 9984-9999 [20] J.M. Williams, A Two-Dimensional Heterogeneous Numerical Model for Auto-Thermal Reforming of Synthetic Crude Glycerol in A Packed Bed Tubular Reactor, Masters Thesis, University of Regina, Saskatchewan, 2017. [21] A.A. Iordanidis, Mathematical Modeling of Catalytic Fixed Bed Reactors. PhD. Thesis, Twente University Press Enschede, Netherlands, 2002. [22] K.R. Rout, H.A. Jakobsen, A numerical study of fixed bed reactor modelling for steam methane reforming process, Can. J. Chem. Eng. 93 (7) (2015) 1222-1238 [23] H. S. Fogler, Essentials of Chemical Reaction Engineering,Upper Saddle River, NJ:Prentice Hall, 2011 [24] U. Jimmy, M. Mohamedali, H. Zbrahim, Thermodynamic analysis of autothermal reforming of synthetic crude glycerol (SCG) for hydrogen production, Chem. Eng. 1 (1) (2017) 4 [25] C. G. Hill and T. W. Root, Introduction to chemical reactor theory. Reaction Kinetics and Reactor Design. CRC Press, 2000:247-346 [26] R. Q. Ferreira, A. Costa, A. Rodrigues, Dynamic behavior of fixed-bed reactors with large-pore catalysts:A bidimensional heterogeneous diffusion/convection model, Comput. Chem. Eng., 16 (8) (1992) 721-751 |