中国化学工程学报 ›› 2022, Vol. 42 ›› Issue (2): 297-311.DOI: 10.1016/j.cjche.2021.01.011
Tao Zheng1,2, Xiuyang Zou1, Meisheng Li1, Shouyong Zhou1, Yijiang Zhao1,2, Zhaoxiang Zhong2
收稿日期:
2020-09-03
修回日期:
2021-01-24
出版日期:
2022-02-28
发布日期:
2022-03-30
通讯作者:
Meisheng Li,E-mail:lms1108@hytc.edu.cn;Yijiang Zhao,E-mail:cyjzhao@126.com
基金资助:
Tao Zheng1,2, Xiuyang Zou1, Meisheng Li1, Shouyong Zhou1, Yijiang Zhao1,2, Zhaoxiang Zhong2
Received:
2020-09-03
Revised:
2021-01-24
Online:
2022-02-28
Published:
2022-03-30
Contact:
Meisheng Li,E-mail:lms1108@hytc.edu.cn;Yijiang Zhao,E-mail:cyjzhao@126.com
Supported by:
摘要: Recent years, membrane separation technology has attracted significant research attention because of the efficient and environmentally friendly operation. The selection of suitable materials to improve the membrane selectivity, permeability and other properties has become a topic of vital research relevance. Two-dimensional (2D) materials, a novel family of multifunctional materials, are widely used in membrane separation due to their unique structure and properties. In this respect, as a novel 2D material, graphitic carbon nitride (g-C3N4) have found specific attention in membrane separation. This study reviews the application of carbon nitride in gas separation membranes, pervaporation membranes, nanofiltration membranes, reverse osmosis membranes, ion exchange membranes and catalytic membranes, along with describing the separation mechanisms.
Tao Zheng, Xiuyang Zou, Meisheng Li, Shouyong Zhou, Yijiang Zhao, Zhaoxiang Zhong. Two-dimensional graphitic carbon nitride for membrane separation[J]. 中国化学工程学报, 2022, 42(2): 297-311.
Tao Zheng, Xiuyang Zou, Meisheng Li, Shouyong Zhou, Yijiang Zhao, Zhaoxiang Zhong. Two-dimensional graphitic carbon nitride for membrane separation[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 297-311.
[1] K.K. Sirkar, Membrane separation technologies:Current developments, Chem. Eng. Commun. 157 (1) (1997) 145-184 [2] R.W. Baker, Research needs in the membrane separation industry:Looking back, looking forward, J. Membr. Sci. 362 (1-2) (2010) 134-136 [3] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:Principles, applications, and recent developments, J. Membr. Sci. 281 (1-2) (2006) 70-87 [4] M.Y. De Zoysa, A.H. Chon, L.M. Korst, A. Llanes, R.H. Chmait, Membrane separation and perinatal outcomes after laser treatment for twin-twin transfusion syndrome, Fetal Diagn Ther 47 (4) (2020) 307-314 [5] Z. Feng, X.D. Chen, X.D. Wu, M.J. Zhang, Formation of biological condensates via phase separation:Characteristics, analytical methods, and physiological implications, J Biol Chem 294 (40) (2019) 14823-14835 [6] Y.Q. Yang, K. Goh, P. Weerachanchai, T.H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging, J. Membr. Sci. 574 (2019) 235-242 [7] K.L. Wang, X.R. Liu, Y. Tan, W. Zhang, S.F. Zhang, J.Z. Li, Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation, Chem. Eng. J. 371 (2019) 769-780 [8] J.D. Shao, H.H. Xie, H.Y. Wang, W.H. Zhou, Q. Luo, X.F. Yu, P.K. Chu, 2D material-based nanofibrous membrane for photothermal cancer therapy, ACS Appl Mater Int.10 (1) (2018) 1155-1163 [9] W. Liu, D.J. Wang, R.A. Soomro, F. Fu, N. Qiao, Y. Yu, R. Wang, B. Xu, Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination, J. Membr. Sci. 591 (2019) 117323 [10] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334 (6052) (2011) 72-75 [11] V. Dincă, A. Mocanu, G. Isopencu, C. Busuioc, S. Brajnicov, A. Vlad, M. Icriverzi, A. Roseanu, M. Dinescu, M. Stroescu, A. Stoica-Guzun, M. Suchea, Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties, Arab. J. Chem. 13 (1) (2020) 3521-3533 [12] J. Yu, Y. Zhang, J.H. Chen, L.L. Cui, W.H. Jing, Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane, J. Membr. Sci. 600 (2020) 117870 [13] K.C. Guan, D. Zhao, M.C. Zhang, J. Shen, G.Y. Zhou, G.P. Liu, W.Q. Jin, 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance, J. Membr. Sci. 542 (2017) 41-51 [14] K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.I. Kye, C. Lee, H.G. Park, Ultimate permeation across atomically thin porous graphene, Science 344 (6181) (2014) 289-292 [15] B. Min, S.W. Yang, A. Korde, Y.H. Kwon, C.W. Jones, S. Nair, Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers, Angew Chem Int Ed 58 (24) (2019) 8201-8205 [16] Y. Wang, L.J. Li, L.T. Yan, X. Gu, P.C. Dai, D.D. Liu, J.G. Bell, G.M. Zhao, X.B. Zhao, K.M. Thomas, Bottom-up fabrication of ultrathin 2D Zr metal-organic framework nanosheets through a facile continuous microdroplet flow reaction, Chem. Mater. 30 (9) (2018) 3048-3059 [17] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane:MXene nanosheet stacks, Angew Chem Int Ed 56 (7) (2017) 1825-1829 [18] Y. Wang, X.C. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry, Angew Chem Int Ed 51 (1) (2012) 68-89 [19] B. Ou, J.X. Wang, Y. Wu, S. Zhao, Z. Wang, Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light, Chem. Eng. J. 380 (2020) 122600 [20] K.T. Cao, Z.Y. Jiang, X.S. Zhang, Y.M. Zhang, J. Zhao, R.S. Xing, S. Yang, C.Y. Gao, F.S. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, J. Membr. Sci. 490 (2015) 72-83 [21] X. Gao, Y.M. Li, X.L. Yang, Y.N. Shang, Y. Wang, B.Y. Gao, Z.N. Wang, Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers, J. Mater. Chem. A 5 (37) (2017) 19875-19883 [22] F. Li, Y.Y. Qu, M.W. Zhao, Efficient helium separation of graphitic carbon nitride membrane, Carbon 95 (2015) 51-57 [23] R.T. Niu, L.Q. Kong, L.Y. Zheng, H.X. Wang, H.F. Shi, Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery, J. Membr. Sci. 525 (2017) 220-228 [24] Y.C. Liu, D.Q. Xie, M.R. Song, L.Z. Jiang, G. Fu, L. Liu, J.Y. Li, Water desalination across multilayer graphitic carbon nitride membrane:Insights from non-equilibrium molecular dynamics simulations, Carbon 140 (2018) 131-138 [25] R.L.G. Lecaros, M.E. Bismonte, B.T. DomaJr, W.S. HungJr, C.C. HuJr, H.A. TsaiJr, S.H. HuangJr, K.R. LeeJr, J.Y. LaiJr, Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler, Carbon 162 (2020) 318-327 [26] J.X. Chen, Z.Y. Li, C.B. Wang, H. Wu, G. Liu, Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties, RSC Adv. 6 (113) (2016) 112148-112157 [27] F. Li, Z.X. Yu, H. Shi, Q.B. Yang, Q. Chen, Y. Pan, G.Y. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation, Chem. Eng. J. 322 (2017) 33-45 [28] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science 271 (5245) (1996) 53-55 [29] H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault, C3N4:Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form, J. Mater. Sci. 35 (10) (2000) 2547-2552 [30] E.G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor, Chem. Mater. 12 (12) (2000) 3906-3912 [31] E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures, New J. Chem. 26 (5) (2002) 508-512 [32] H.Z. Zhao, X.L. Chen, C.C. Jia, T. Zhou, X.H. Qu, J.K. Jian, Y.P. Xu, T. Zhou, A facile mechanochemical way to prepare g-C3N4, Mater. Sci. Eng.:B 122 (2) (2005) 90-93 [33] Y.J. Wen, D. Qu, L. An, X. Gao, W.S. Jiang, D.D. Wu, D.X. Yang, Z.C. Sun, Defective g-C3N4 prepared by the NaBH4 reduction for high-performance H2 production, ACS Sustain. Chem. Eng. 7 (2) (2019) 2343-2349 [34] L. Jia, X.X. Cheng, X.N. Wang, H. Cai, P. He, J.Y. Ma, L.L. Li, Y. Ding, X.X. Fan, Large-scale preparation of g-C3N4 porous nanotubes with enhanced photocatalytic activity by using salicylic acid and melamine, Ind. Eng. Chem. Res. 59 (3) (2020) 1065-1072 [35] H. Miao, G.W. Zhang, X.Y. Hu, J.L. Mu, T.X. Han, J. Fan, C.J. Zhu, L.X. Song, J.T. Bai, X. Hou, A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties, J. Alloy. Compd. 690 (2017) 669-676 [36] J. Lu, Y. Wang, J.F. Huang, L.Y. Cao, J.Y. Li, G.J. Hai, Z. Bai, One-step synthesis of g-C3NVV hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity, Mater. Sci. Eng.:B 214 (2016) 19-25 [37] C. Li, C.B. Cao, H.S. Zhu, Graphitic carbon nitride thin films deposited by electrodeposition, Mater. Lett. 58 (12-13) (2004) 1903-1906 [38] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials:Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (41) (2008) 4893 [39] Y.H. Wang, X.H. Pan, Q.H. Zheng, Z. Lin, F. Huang, Al-doped ZnO thin film enhancing the photo-catalytic bactericidal performance on the (1 0 0) plane of ZnO single crystal, Catal. Today 224 (2014) 188-192 [40] Y.P. Wang, X.Y. Xia, J.W. Zhu, Y. Li, X. Wang, X.D. Hu, Catalytic activity of nanometer-sized CuO/Fe2O3 on thermal decompositon of AP and combustion of AP-based propellant, Combust. Sci. Technol. 183 (2) (2010) 154-162 [41] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light:selected results and related mechanisms on interfacial charge carrier transfer dynamics, J Phys Chem A 115 (46) (2011) 13211-13241 [42] A. Kay, I. Cesar, M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films, J Am Chem Soc 128 (49) (2006) 15714-15721 [43] Cao S, Low J, Yu J, Jaroniec M, Polymeric photocatalysts based on graphitic carbon nitride, Adv Mater 27 (13) (2015) 2150-2176 [44] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer To Achieving Sustainability? Chem. Rev. 116 (2016) 7159-7329 [45] N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J Colloid Interface Sci 540 (2019) 1-8 [46] Y. Liu, F.Y. Su, Y.X. Yu, W.D. Zhang, Nano g-C3N4 modified Ti-Fe2O3 vertically arrays for efficient photoelectrochemical generation of hydrogen under visible light, Int. J. Hydrog. Energy 41 (18) (2016) 7270-7279 [47] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci. 359 (1-2) (2010) 115-125 [48] M. Li, X.B. Jiang, G.H. He, Application of membrane separation technology in postcombustion carbon dioxide capture process, Front. Chem. Sci. Eng. 8 (2) (2014) 233-239 [49] Z.Z. Tian, S.F. Wang, Y.T. Wang, X.R. Ma, K.T. Cao, D.D. Peng, X.Y. Wu, H. Wu, Z.Y. Jiang, Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci. 514 (2016) 15-24 [50] M.J.C. Ordoñez, K.J. BalkusJr, J.P. FerrarisJr, I.H. MusselmanJr, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci. 361 (1-2) (2010) 28-37 [51] C. Casado-Coterillo, A. Fernández-Barquín, B. Zornoza, C. Téllez, J. Coronas, Á. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv. 5 (124) (2015) 102350-102361 [52] J.Y. Yu, F.L. Chi, Y.P. Sun, J.J. Guo, X.G. Liu, Assembled porous Fe3O4@g-C3N4 hybrid nanocomposites with multiple interface polarization for stable microwave absorption, Ceram. Int. 44 (16) (2018) 19207-19216 [53] R. Peymanfar, J. Karimi, R. Fallahi, Novel, promising, and broadband microwave-absorbing nanocomposite based on the graphite-like carbon nitride/CuS, J. Appl. Polym. Sci. 137 (9) (2020) 48430 [54] Y.J. Ji, H.L. Dong, H.P. Lin, L.L. Zhang, T.J. Hou, Y.Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv. 6 (57) (2016) 52377-52383 [55] S.W. de Silva, A. Du, W. Senadeera, Y. Gu, Strained graphitic carbon nitride for hydrogen purification, J. Membr. Sci. 528 (2017) 201-205 [56] Y. Guo, C.M. Tang, X.B. Wang, C. Wang, L. Fu, Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane, Chinese Phys. B 28 (4) (2019) 048102 [57] J.M. Hou, Y.Y. Wei, S. Zhou, Y.J. Wang, H.H. Wang, Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane, Chem. Eng. Sci. 182 (2018) 180-188 [58] M. Soto-Herranz, M. Sánchez-Báscones, A. Hérnandez-Giménez, J.I. Calvo-Díez, J. Martín-Gil, P. Martín-Ramos, Effects of protonation, hydroxylamination, and hydrazination of g-C3N4 on the performance of matrimid®/g-C3N4 membranes, Nanomaterials (Basel) 8 (12) (2018) E1010. [59] A. Jomekian, B. Bazooyar, J. Esmaeilzadeh, R.M. Behbahani, Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate, Sep. Purif. Technol. 236 (2020) 116307 [60] N.X. Wang, S.L. Ji, G.J. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213 (2012) 318-329 [61] D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv. 3 (38) (2013) 17120 [62] J.K. Wu, C.C. Ye, W.H. Zhang, N.X. Wang, K.R. Lee, Q.F. An, Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration, J. Membr. Sci. 577 (2019) 104-112 [63] S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation, Ind. Eng. Chem. Res. 53 (37) (2014) 14474-14484 [64] R.L.G. Lecaros, K.M. Deseo, W.S. Hung, L.L. Tayo, C.C. Hu, Q.F. An, H.A. Tsai, K.R. Lee, J.Y. Lai, Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane, J. Membr. Sci. 576 (2019) 36-47 [65] R.A. Kirk, M. Putintseva, A. Volkov, P.M. Budd, The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes, BMC Chem. Eng. 1 (1) (2019) 1-19 [66] R. Castro-Muñoz, J. Buera-González, Ó.D.L. Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes, J. Membr. Sci. 582 (2019) 423-434 [67] H. Jin, K. Mo, F. Wen, Y.S. Li, Preparation and pervaporation performance of CAU-10-H MOF membranes, J. Membr. Sci. 577 (2019) 129-136 [68] X.Y. Zou, M.S. Li, S.Y. Zhou, C. Chen, J. Zhong, A.L. Xue, Y. Zhang, Y.J. Zhao, Diffusion behaviors of ethanol and water through g-C3N4-based membranes:Insights from molecular dynamics simulation, J. Membr. Sci. 585 (2019) 81-89 [69] Q.W. Gao, Y.D. Zhu, Y. Ruan, Y.M. Zhang, W. Zhu, X.H. Lu, L.H. Lu, Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit:A molecular dynamics study, Langmuir 33 (42) (2017) 11467-11474 [70] J. Campbell, G. Szekely,R.P. Davies, D.C. Braddock, A.G. Livingston, Fabrication of hybrid polymer/metal organic framework membranes:mixed matrix membranes versus in situ growth, J. Mater. Chem. A, 2 (2014) 9260-9271 [71] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188 (2017) 24-37 [72] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes, Chem. Eng. Sci. 181 (2018) 237-250 [73] Shi C, Lv C, Wu L, Hou X, Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution, J Hazard Mater 338 (2017) 241-249 [74] Z.J. Yuan, X.L. Wu, Y.J. Jiang, Y.F. Li, J.J. Huang, L. Hao, J. Zhang, J.T. Wang, Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance, J. Membr. Sci. 549 (2018) 1-11 [75] Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci. 515 (2016) 230-237 [76] P. Zhang, J.L. Gong, G.M. Zeng, C.H. Deng, H.C. Yang, H.Y. Liu, S.Y. Huan, Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal, Chem. Eng. J. 322 (2017) 657-666 [77] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, J. Membr. Sci. 552 (2018) 326-335 [78] J. Ma, Y. He, G.Y. Zeng, F. Li, Y.B. Li, J.F. Xiao, S.Z. Yang, Bio-inspired method to fabricate poly-dopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal, Polym. Adv. Technol. 29 (2) (2018) 941-950 [79] Q.Y. Gan, W.L. Shi, Y.J. Xing, Y. Hou, A polyoxoniobate/g-C3N4 nanoporous material with high adsorption capacity of methylene blue from aqueous solution, Front Chem 6 (2018) 7 [80] H.C. Lan, F. Wang, M. Lan, X.Q. An, H.J. Liu, J.H. Qu, Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-Fenton-like membranes for wastewater treatment, Environ Sci Technol 53 (12) (2019) 6981-6988 [81] I. Papailias, N. Todorova, T. Giannakopoulou, N. Ioannidis, N. Boukos, C.P. Athanasekou, D. Dimotikali, C. Trapalis, Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation, Appl. Catal. B:Environ. 239 (2018) 16-26 [82] K. Xiao, P. Giusto, L.P. Wen, L. Jiang, M. Antonietti, Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes, Angew Chem Int Ed Engl 57 (32) (2018) 10123-10126 [83] Wang Y., Li L., Wei Y., Xue J., Chen H., Ding L., Caro J., Wang H., Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting pacers, Angew. Chem. Int. Edit. 56 (2017) 8974-8980 [84] Y. Wang, N.N. Wu, Y. Wang, H. Ma, J.X. Zhang, L.L. Xu, M.K. Albolkany, B. Liu, Graphite phase carbon nitride based membrane for selective permeation, Nat Commun 10 (1) (2019) 2500 [85] A.A. Aziz, K.C. Wong, P.S. Goh, A.F. Ismail, I.W. Azelee, Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination, J. Water Process. Eng. 33 (2020) 101005 [86] W.Y. Ye, H.W. Liu, F. Lin, J.Y. Lin, S.F. Zhao, S.S. Yang, J.W. Hou, S.G. Zhou, B. van der Bruggen, High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts, Environ. Sci.:Nano 6 (10) (2019) 2958-2967 [87] Y. Wang, L. Liu, J. Xue, J. Hou, L. Ding, H. Wang, Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. Aiche, J. 64 (2018) 2181-2188 [88] Y.L. Liu, X.M. Wang, X.Q. Gao, J.F. Zheng, J. Wang, A. Volodin, Y.F. Xie, X. Huang, B. van der Bruggen, J.Y. Zhu, High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration, J. Membr. Sci. 596 (2020) 117717 [89] L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, Appl. Catal B-Environ. 221 (2018) 715-725 [90] T. Sata, Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis, J. Membr. Sci. 93 (2) (1994) 117-135 [91] Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-Scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction, Adv. Mater. 30 (2018) 1706108 [92] N. Hou, W. Sun, F. Du, H. Wu, Effect of (super)alkali doping on the electronic and second-order nonlinear optical properties of graphitic C3N4, Optik. 183 (2019) 455-462 [93] A. Alshahrie, M.O. Ansari, High performance supercapacitor applications and DC electrical conductivity retention on surfactant immobilized macroporous ternary polypyrrole/graphitic-C3N4@Graphene nanocomposite, Electron. Mater. Lett. 15 (2) (2019) 238-246 [94] F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:A review, J Environ Manage 92 (3) (2011) 407-418 [95] Z.T. Wu, L. Gao, J. Wang, F.G. Zhao, L.L. Fan, D. Hua, S. Japip, J.R. Xiao, X.J. Zhang, S.F. Zhou, G.W. Zhan, Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration, J. Membr. Sci. 601 (2020) 117948 [96] F. Wang, G. Wang, J.C. Zhang, B.Q. Li, J. Zhang, J. Deng, J.W. Chen, R.L. Wang, Novel sulfonated poly(ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications, J. Electroanal. Chem. 797 (2017) 107-112 [97] B. Liu, Y.X. Zhang, Y.H. Jiang, P.H. Qian, H.F. Shi, High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery, J. Membr. Sci. 591 (2019) 117332 [98] L.L. Qu, G. Zhu, J. Ji, T.P. Yadav, Y.J. Chen, G.H. Yang, H. Xu, H.T. Li, Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants, ACS Appl Mater Interfaces 10 (49) (2018) 42427-42435 [99] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4 (6) (2011) 1946 [100] M.J. Chang, W.N. Cui, J. Liu, K. Wang, X.J. Chai, Fabrication and photocatalytic properties of flexible g-C3N4/SiO2 composite membrane by electrospinning method, J. Mater. Sci.:Mater. Electron. 29 (8) (2018) 6771-6778 [101] T.S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477 (2011) 443-447 [102] Y.B. Wei, Y.X. Zhu, Y.J. Jiang, Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification, Chem. Eng. J. 356 (2019) 915-925 [103] Q.J. Xiang, J.G. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 Composites, J. Phys. Chem. C 115 (15) (2011) 7355-7363 [104] Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho WK, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl Mater Interfaces 5 (21) (2013) 11392-11401 [105] Q. Zhang, S. Chen, X.F. Fan, H.G. Zhang, H.T. Yu, X. Quan, A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal. B:Environ. 224 (2018) 204-213 [106] H.X. Zhao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B:Environ. 194 (2016) 134-140 [107] N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Abdullah, S.H. Paiman, N. Yusof, F. Aziz, Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment, Chem. Eng. J. 360 (2019) 1437-1446 |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[8] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[10] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems[J]. 中国化学工程学报, 2023, 57(5): 72-78. |
[11] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes[J]. 中国化学工程学报, 2023, 57(5): 309-318. |
[12] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation[J]. 中国化学工程学报, 2023, 56(4): 215-224. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation[J]. 中国化学工程学报, 2023, 55(3): 73-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||