[1] M. Bagheri, C. Kang, P. Mirbod, Suspension flows in a pipe covered with permeable surfaces, American Physics Society Division of Fluid Dynamics, 2019 [2] M. Bagheri, P. Mirbod, Shear Flow of Suspensions over Porous Media Models, American Physics Society Division of Fluid Dynamics, 2020 [3] M. Salimi Gachuiee, S.M. Peyghambarzadeh, S.H. Hashemabadi, A. Chabi, Experimental investigation of convective heat transfer of Al2O3/water nanofluid through the micro heat exchanger, Modares Mechanical Engineering, 15(2) (2015) 270-280 [4] X.D. Wang, B. An, L. Lin, D.J. Lee, Inverse geometric optimization for geometry of nanofluid-cooled microchannel heat sink, Appl. Therm. Eng. 55 (1-2) (2013) 87-94 [5] X.D. Wang, A. Bin, J.L. Xu, Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions, Energy Convers. Manag. 65 (2013) 528-538 [6] V. Sajith, D. Haridas, C.B. Sobhan, G.R.C. Reddy, Convective heat transfer studies in macro and mini channels using digital interferometry, Int. J. Therm. Sci. 50 (3) (2011) 239-249 [7] M. Bagheri, S. Akbarzadeh, R. Tikani, M. Raisivand, Thermohydrodynamic analysis of foil journal bearings using differential quadrature method, Proc. Inst. Mech. Eng. Part J:J. Eng. Tribol. 230 (5) (2016) 561-570 [8] C.B. Kim, C. Leng, X.D. Wang, T.H. Wang, W.M. Yan, Effects of slot-jet length on the cooling performance of hybrid microchannel/slot-jet module, Int. J. Heat Mass Transf. 89 (2015) 838-845 [9] B. Zang, T.H. New, Near-field dynamics of parallel twin jets in cross-flow, Phys. Fluids 29 (3) (2017) 035103 [10] O.A. Akbari, D. Toghraie, A. Karimipour, A. Marzban, G.R. Ahmadi, The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid, Phys. E:Low-Dimens. Syst. Nanostruct. 86 (2017) 68-75 [11] H. Alipour, A. Karimipour, M.R. Safaei, D.T. Semiromi, O.A. Akbari, Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel, Phys. E:Low-Dimens. Syst. Nanostruct. 88 (2017) 60-76 [12] Q. Gravndyan, O.A. Akbari, D. Toghraie, A. Marzban, R. Mashayekhi, R. Karimi, F. Pourfattah, The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel, J. Mol. Liq. 236 (2017) 254-265 [13] B. Wegner, Y. Huai, A. Sadiki, Comparative study of turbulent mixing in jet in cross-flow configurations using LES, Int. J. Heat Fluid Flow 25 (5) (2004) 767-775 [14] A.K. Barik, S. Rout, A. Mukherjee, Numerical investigation of heat transfer enhancement from a protruded surface by cross-flow jet using Al2O3-water nanofluid, Int. J. Heat Mass Transf. 101 (2016) 550-561 [15] E. Torshizi, I. Zahmatkesh, Evaluation of Eulerian-Eulerian and two-phase mixture models for the analysis of nanofluid flow in a microchannel, in:Proceedings of the 22nd Annual International Conference on Mechanical Engineering, Ahvaz, Iran, 2014. [16] E. Torshizi, I. Zahmatkesh, Comparison between single-phase, two-phase mixture and Eulerian-Eulerian models for the description of jet impingement of nanofluids, J. Appl. Comp. Sci. Mech. 27 (2) (2016) 55-70 [17] O.A. Akbari, A. Karimipour, D. Toghraie Semiromi, M.R. Safaei, H. Alipour, M. Goodarzi and M. Dahari, Investigation of Rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a two dimensional Rib-microchannel, Applied Mathematics and Computation, 290 (2016) 135-153 [18] O.A. Akbari, D. Toghraie, A. Karimipour, Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib, Adv. Mech. Eng. 8 (4) (2016) 168781401664101 [19] C.L. Wang, L. Wang, B. Sundén, A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair, Int. J. Heat Mass Transf. 88 (2015) 82-90 [20] O.A. Akbari, D. Toghraie, A. Karimipour, Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel, Adv. Mech. Eng. 7 (11) (2015) 168781401561815 [21] M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method, Energy Convers. Manag. 78 (2014) 347-358 [22] S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Appl. Therm. Eng. 62 (2) (2014) 492-499 [23] E.J. Gutmark, I.M. Ibrahim, S. Murugappan, Dynamics of single and twin circular jets in cross flow, Exp. Fluids 50 (3) (2011) 653-663 [24] V.S. Naik-Nimbalkar, A.D. Suryawanshi, A.W. Patwardhan, I. Banerjee, G. Padmakumar, G. Vaidyanathan, Twin jets in cross-flow, Chem. Eng. Sci. 66 (12) (2011) 2616-2626 [25] S. B. Tambe, Liquid Jets Injected into Non-Uniform Crossflow, PhD Thesis, University of Cincinnati, Hamilton, 2010 [26] O. Manca, S. Nardini, D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Appl. Therm. Eng. 37 (2012) 280-292 [27] M. Goodarzi, A.S. Kherbeet, M. Afrand, E. Sadeghinezhad, M. Mehrali, P. Zahedi, S. Wongwises, M. Dahari, Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids, Int. Commun. Heat Mass Transf. 76 (2016) 16-23 [28] A. Raisi, S.M. Aminossadati, B. Ghasemi, An innovative nanofluid-based cooling using separated natural and forced convection in low Reynolds flows, J. Taiwan Inst. Chem. Eng. 62 (2016) 259-266 [29] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, M. Dahari, Investigation of rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannel, Appl. Math. Comput. 290 (2016) 135-153 [30] M.R. Safaei, M. Gooarzi, O.A. Akbari, M.S. Shadloo, M. Dahari, Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. Electronics Cooling. InTech, Web of ScienceTM Core Collection, 2016. [31] A.R. Rahmati, O.A. Akbari, A. Marzban, D. Toghraie, R. Karimi, F. Pourfattah, Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions, Therm. Sci. Eng. Prog. 5 (2018) 263-277 [32] A. Arabpour, A. Karimipour, D. Toghraie, O.A. Akbari. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim, 131(2018) 2975-2991 [33] M.R. Shamsi, O.A. Akbari, A. Marzban, D. Toghraie, R. Mashayekhi, Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs, Phys. E:Low-Dimens. Syst. Nanostruct. 93 (2017) 167-178 [34] C. Leng, X.D. Wang, T.H. Wang, W.M. Yan, Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink, Int. J. Heat Mass Transf. 84 (2015) 359-369 [35] O. Mahian, A. Kianifar, C. Kleinstreuer, M.A. Al-Nimr, I. Pop, A.Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow, Int. J. Heat Mass Transf. 65 (2013) 514-532 [36] E. Khodabandeh, D. Toghraie, A. Chamkha, R. Mashayekhi, O. Akbari, S.A. Rozati, Energy saving with using of elliptic pillows in turbulent flow of two-phase water-silver nanofluid in a spiral heat exchanger, Int. J. Numer. Methods Heat Fluid Flow 30 (4) (2019) 2025-2049 [37] T. Tayebi, A.J. Chamkha, Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block, Int. J. Numer. Methods Heat Fluid Flow 30 (3) (2019) 1115-1136 [38] M. Goodarzi, A. Amiri, M.S. Goodarzi, M.R. Safaei, A. Karimipour, E.M. Languri, M. Dahari, Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids, Int. Commun. Heat Mass Transf. 66 (2015) 172-179 [39] F. Selimefendigil, A.J. Chamkha, MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder, Int. J. Numer. Methods Heat Fluid Flow 30 (4) (2019) 1637-1660 [40] A.S. Dogonchi, T. Armaghani, A.J. Chamkha, et al., Natural Convection Analysis in a Cavity with an Inclined Elliptical Heater Subject to Shape Factor of Nanoparticles and Magnetic Field. Arab J Sci Eng. 44(2019) 7919-7931 [41] M. Goodarzi, M.R. Safaei, K. Vafai, G. Ahmadi, M. Dahari, S.N. Kazi, N. Jomhari, Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, Int. J. Therm. Sci. 75 (2014) 204-220 [42] F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Role of magnetic field on forced convection of nanofluid in a branching channel, Int. J. Numer. Methods Heat Fluid Flow 30 (4) (2019) 1755-1772 [43] H.M. Sadeghi, M. Babayan, A. Chamkha, Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition, Int. J. Heat Mass Transf. 147 (2020) 118970 [44] Y. Menni, A.J. Chamkha, N. Massarotti, H. Ameur, N. Kaid, M. Bensafi, Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles, Int. J. Numer. Methods Heat Fluid Flow 30 (9) (2020) 4349-4386 [45] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, G. Shahzadi, Entropy generation and consequences of binary chemical reaction on MHD darcy-forchheimer williamson nanofluid flow over non-linearly stretching surface, Entropy 22 (1) (2019) 18 [46] M. Ghalambaz, A.J. Chamkha, D.S. Wen, Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity, Int. J. Heat Mass Transf. 138 (2019) 738-749 [47] A.I. Alsabery, R. Mohebbi, A.J. Chamkha, I. Hashim, Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder, Chem. Eng. Sci. 201 (2019) 247-263 [48] Y. Menni, A. Azzi, A. Chamkha, Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path, J. Therm. Anal. Calorim. 135 (4) (2019) 1951-1976 [49] S.A.M. Mehryan, E. Izadpanahi, M. Ghalambaz, A.J. Chamkha, Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu:Al2O3/water hybrid nanofluid, J. Therm. Anal. Calorim. 137 (3) (2019) 965-982 [50] Z.X. Li, M. Ramzan, A. Shafee, S. Saleem, Q.M. Al-Mdallal, A.J. Chamkha, Numerical approach for nanofluid transportation due to electric force in a porous enclosure, Microsyst. Technol. 25 (6) (2019) 2501-2514 [51] J. Raza, F. Mebarek-Oudina, A.J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects, Multidiscip. Model. Mater. Struct. 15 (4) (2019) 737-757 [52] A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater, J. Therm. Anal. Calorim. 135 (1) (2019) 729-750 [53] Z. Nikkhah, A. Karimipour, M.R. Safaei, P. Forghani-Tehrani, M. Goodarzi, M. Dahari, S. Wongwises, Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition, Int. Commun. Heat Mass Transf. 68 (2015) 69-77 [54] T. Abuldrazzaq, H. Togun, H. Alsulami, M. Goodarzi, M.R. Safaei, Heat transfer improvement in a double backward-facing expanding channel using different working fluids, Symmetry 12 (7) (2020) 1088 [55] M.S. Ali, Z. Anwar, M.A. Mujtaba, M.E.M. Soudagar, I.A. Badruddin, M.R. Safaei, A. Iqbal, A. Afzal, L. Razzaq, A. Khidmatgar, M. Goodarzi, Two-phase frictional pressure drop with pure refrigerants in vertical mini/micro-channels, Case Stud. Therm. Eng. 23 (2021) 100824 [56] A.A.A.A. Alrashed, M.S. Gharibdousti, M. Goodarzi, L.R. de Oliveira, M.R. Safaei, E.P. Bandarra Filho, Effects on thermophysical properties of carbon based nanofluids:Experimental data, modelling using regression, ANFIS and ANN, Int. J. Heat Mass Transf. 125 (2018) 920-932 [57] R. Dadsetani, G.A. Sheikhzade, M. Goodarzi, A. Zeeshan, R. Ellahi, M.R. Safaei, Thermal and mechanical design of tangential hybrid microchannel and high-conductivity inserts for cooling of disk-shaped electronic components, J. Therm. Anal. Calorim. 143 (3) (2021) 2125-2133 [58] R. Dadsetani, G.A. Sheikhzadeh, M.R. Safaei, A.S. Leon, M. Goodarzi, Cooling enhancement and stress reduction optimization of disk-shaped electronic components using nanofluids, Symmetry 12 (6) (2020) 931 [59] J.A. Esfahani, M.R. Safaei, M. Goharimanesh, L.R. de Oliveira, M. Goodarzi, S. Shamshirband, E.P.B. Filho, Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids, Powder Technol. 317 (2017) 458-470 |