[1] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 187310-15.[2] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress and Expsiotion, San Francisco, CA, November 12-17, 1995.[3] H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng. 88(2014) 363-368.[4] H. Li, Y. He, Y. Hu, B. Jiang, Y. Huang, Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids, Int. J. Heat Mass Transf. 91(2015) 385-389.[5] F.C. Li, J.C. Yang, W.W. Zhou, Y.R. He, Y.M. Huang, B.C. Jiang, Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluidbased nanofluids containing multiwalled carbon nanotubes, Thermochim. Acta 556(2013) 47-53.[6] J.C. Yang, F.C. Li, W.W. Zhou, Y.R. He, B.C. Jiang, Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids, Int. J. Heat Mass Transf. 55(2012) 3160-3166.[7] Y. Hu, Y. He, C. Qi, B. Jiang, H.I. Schlaberg, Experimental and numerical study of natural convection in a square enclosure filled with nanofluid, Int. J. Heat Mass Transf. 78(2014) 380-392.[8] Y. Hu, Y. He, Z. Zhang, B. Jiang, Y. Huang, Natural convection heat transfer for eutectic binary nitrate salt based Al2O3, nanocomposites in solar power systems, Renew. Energy 114(2017) 686-696.[9] X. Wang, Y. Hu, T. Li, Y. He, Experimental investigation of graphene nanofluid and numerical simulation of its natural convection in a square enclosure, Nanosci. Nanotechnol. Lett. 9(2017) 640-649.[10] C. Qi, Y. Wan, L. Liang, Z. Rao, Y. Li, Numerical and experimental investigation into the effects of nanoparticle mass fraction and bubble size on boiling heat transfer of TiO2-water nanofluid, ASME J. Heat Transfer 138(2016), 081503.[11] C. Qi, L. Liang, Z. Rao, Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method, Int. J. Heat Mass Transf. 94(2016) 316-326.[12] Y. Hu, H. Li, Y. He, Z. Liu, Y. Zhao, Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid, Int. J. Heat Mass Transf. 107(2017) 820-828.[13] Y. Hu, H. Li, Y. He, L. Wang, Role of nanoparticles on boiling heat transfer performance of ethylene glycol aqueous solution based graphene nanosheets nanofluid, Int. J. Heat Mass Transf. 96(2016) 565-572.[14] Y. He, H. Li, Y. Li, X. Wang, J. Zhu, Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel, Int. J. Heat Mass Transf. 98(2016) 611-615.[15] A. Azari, M. Kalbasi, M. Derakhshandeh, M. Rahimi, An experimental study on nanofluids convective heat transfer through a straight tube under constant heat flux, Chin. J. Chem. Eng. 21(10) (2013) 1082-1088.[16] M. Hatami, M.J.Z. Ganji, I. Sohrabiasl, D. Jing, Optimization of the fuel rod's arrangement cooled by turbulent nanofluids flow in pressurized water reactor (PWR), Chin. J. Chem. Eng. 25(6) (2016) 722-731.[17] T. Perarasu, M. Arivazhagan, P. Sivashanmugam, Experimental and CFD heat transfer studies of Al2O3-water nanofluid in a coiled agitated vessel equipped with propeller, Chin. J. Chem. Eng. 21(11) (2013) 1232-1243.[18] B. Sun, A. Yang, D. Yang, Experimental study on the heat transfer and flow characteristics of nanofluids in the built-in twisted belt external thread tubes, Int. J. Heat Mass Transf. 107(2017) 712-722.[19] B. Sun, C. Peng, R.L. Zuo, D. Yang, H.W. Li, Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger, Exp. Thermal Fluid Sci. 76(2016) 75-86.[20] B. Sun, Z. Zhang, D. Yang, Improved heat transfer and flow resistance achieved with drag reducing Cu nanofluids in the horizontal tube and built-in twisted belt tubes, Int. J. Heat Mass Transf. 95(2016) 69-82.[21] B. Sun, W. Lei, D. Yang, Flow and convective heat transfer characteristics of Fe2O3-water nanofluids inside copper tubes, Int. Commun. Heat Mass Transfer 64(2015) 21-28.[22] B. Sun, D. Yang, Experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube, Int. J. Heat Mass Transf. 64(2013) 559-566.[23] J.C. Yang, F.C. Li, H.P. Xu, Y.R. He, Y.M. Huang, B.C. Jiang, Heat transfer performance of viscoelastic-fluid-based nanofluid pipe flow at entrance region, Exp. Heat Transfer 28(2015) 125-138.[24] J.C. Yang, F.C. Li, Y.R. He, Y.M. Huang, B.C. Jiang, Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelasticfluid-based cu nanofluid, Int. J. Heat Mass Transf. 62(2013) 303-313.[25] J.P. Hartnett, T.F. Irvine, G.A. Greene, Y.I. Cho, Advances in Heat Transfer, Academic Press, (1998) 187-228.[26] K. Nanan, C. Thianpong, M. Pimsarn, V. Chuwattanakul, S. Eiamsa-Ard, Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators, Appl. Therm. Eng. 114(2017) 130-147.[27] G.B. Abadi, K.C. Kim, Experimental heat transfer and pressure drop in a metal-foamfilled tube heat exchanger, Exp. Thermal Fluid Sci. 82(2017) 42-49.[28] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43(2000) 3701-3707.[29] W. Duangthongsuk, S. Wongwises, Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid, Int. Commun. Heat Mass Transfer 35(2008) 1320-1326.[30] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transfer 35(2008) 657-665.[31] C. Qi, Y.L. Wan, C.Y. Li, D.T. Han, Z.H. Rao, Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube, Int. J. Heat Mass Transf. 115(Part B) (2017) 1072-1084.[32] S.J. Kline, F. McClintock, Describing uncertainties in single sample experiments, Mech. Eng. 75(1953) 3-8.[33] Y.T. Fei, Error Theory and Data Processing, China Machine Press, Peking, (1995) 63-75(in Chinese).[34] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(2) (1998) 151-170.[35] S.M. Yang, W.Q. Tao, Heat Transfer, Higher Education Press, Peking, (2012) 246-251(in Chinese).[36] V. Gnielinski, New equations for heat mass transfer in turbulent pipe and channel flows, Int. Chem. Eng. 16(1976) 359-368. |