[1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (7411) (2012) 294-303 [2] W. Li, J. Liu, D.Y. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1 (6) (2016) 1-17 [3] L.B. Sun, Y.H. Kang, Y.Q. Shi, Y. Jiang, X.Q. Liu, Highly selective capture of the greenhouse gas CO2 in polymers, ACS Sustainable Chem. Eng. 3 (12) (2015) 3077-3085 [4] J.J. Cai, J.B. Qi, C.P. Yang, X.B. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture, ACS Appl Mater Interfaces 6 (5) (2014) 3703-3711 [5] C.M. Zhang, W. Song, Q.L. Ma, L.J. Xie, X.C. Zhang, H. Guo, Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification, Energy Fuels 30 (5) (2016) 4181-4190 [6] W.L. Gao, S.Y. Liang, R.J. Wang, Q. Jiang, Y. Zhang, Q.W. Zheng, B.Q. Xie, C.Y. Toe, X.C. Zhu, J.Y. Wang, L. Huang, Y.S. Gao, Z. Wang, C. Jo, Q. Wang, L.D. Wang, Y.F. Liu, B. Louis, J. Scott, A.C. Roger, R. Amal, H. He, S.E. Park, Industrial carbon dioxide capture and utilization:State of the art and future challenges, Chem Soc Rev 49 (23) (2020) 8584-8686 [7] S.J. Han, S.M. Hwang, H.G. Park, C.D. Zhang, K.W. Jun, S.K. Kim, Correction:Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling, J. Mater. Chem. A 8 (35) (2020) 18385 [8] J.W. To, J.J. He, J.G. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S.C. Chen, W.G. Bae, L.J. Pan, J.B. Tok, J. Wilcox, Z.N. Bao, Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor, J Am Chem Soc 138 (3) (2016) 1001-1009 [9] Y.R. Liang, C. Yang, H.W. Dong, W.Q. Li, H. Hu, Y. Xiao, M.T. Zheng, Y.L. Liu, Facile synthesis of highly porous carbon from rice husk, ACS Sustain. Chem. Eng. 5 (8) (2017) 7111-7117 [10] S.J. Xu, J. He, S.B. Jin, B.E. Tan, Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity, J. Colloid Interface Sci. 509 (2018) 457-462 [11] M. Pardakhti, T. Jafari, Z. Tobin, B. Dutta, E. Moharreri, N.S. Shemshaki, S. Suib, R. Srivastava, Trends in solid adsorbent materials development for CO2 capture, ACS Appl. Mater. Interfaces 11 (38) (2019) 34533-34559 [12] Seah GL, Wang L, Tan LF, Tipjanrawee C, Sasangka WA, Usadi AK, McConnachie JM, Tan KW, Ordered mesoporous alumina with tunable morphologies and pore sizes for CO2 capture and dye separation, ACS Appl Mater Interfaces 13 (30) (2021) 36117-36129 [13] W.G. Lu, J.P. Sculley, D.Q. Yuan, R. Krishna, Z.W. Wei, H.C. Zhou, Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas, Angew Chem Int Ed Engl 51 (30) (2012) 7480-7484 [14] D.K. Maity, A. Dey, S. Ghosh, A. Halder, P.P. Ray, D. Ghoshal, Set of multifunctional azo functionalized semiconducting Cd(II)-MOFs showing photoswitching property and selective CO2 adsorption, Inorg Chem 57 (1) (2018) 251-263 [15] J. Park, B.L. Suh, J. Kim, Computational design of a photoresponsive metal-organic framework for post combustion carbon capture, J. Phys. Chem. C 124 (24) (2020) 13162-13167 [16] S. Karka, S. Kodukula, S.V. Nandury, U. Pal, Polyethylenimine-modified zeolite 13X for CO2 capture:Adsorption and kinetic studies, ACS Omega 4 (15) (2019) 16441-16449 [17] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Microporous Mesoporous Mater. 303 (2020) 110261 [18] Z.Z. Zhang, N.N. Sun, W. Wei, Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture, Carbon 161 (2020) 629-638 [19] O. Buyukcakir, Y. Seo, A. Coskun, Thinking outside the cage:Controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers, Chem. Mater. 27 (11) (2015) 4149-4155 [20] E. Kolodzeiski, S. Amirjalayer, Atomistic insight into the host-guest interaction of a photo-responsive metal-organic framework. (2019). [21] P. Tan, Y. Jiang, X.Q. Liu, L.B. Sun, Making porous materials respond to visible light, ACS Energy Lett. 4 (11) (2019) 2656-2667 [22] Y.L. Zhu, W. Zhang, Reversible tuning of pore size and CO2adsorption in azobenzene functionalized porous organic polymers, Chem. Sci. 5 (12) (2014) 4957-4961 [23] G. Das, T. Prakasam, M.A. Addicoat, S.K. Sharma, F. Ravaux, R. Mathew, M. Baias, R. Jagannathan, M.A. Olson, A. Trabolsi, Azobenzene-equipped covalent organic framework:Light-operated reservoir, J. Am. Chem. Soc. 141 (48) (2019) 19078-19087 [24] Y. Jiang, J. Park, P. Tan, L. Feng, X.Q. Liu, L.B. Sun, H.C. Zhou, Maximizing photoresponsive efficiency by isolating metal-organic polyhedra into confined nanoscaled spaces, J. Am. Chem. Soc. 141 (20) (2019)8221-8227 [25] Y. Jiang, P. Tan, S.C. Qi, X.Q. Liu, J.H. Yan, F. Fan, L.B. Sun, Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs:Efficient adsorbents for tailorable CO2 capture, Angew Chem Int Ed Engl 58 (20) (2019) 6600-6604 [26] O. Buyukcakir, S.H. Je, J. Park, H.A. Patel, Y. Jung, C.T. Yavuz, A. Coskun, Systematic investigation of the effect of polymerization routes on the gas-sorption properties of nanoporous azobenzene polymers, Chemistry 21 (43) (2015) 15320-15327 [27] R.H. Huang, M.R. Hill, R. Babarao, N.V. Medhekar, CO2 adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks, J. Phys. Chem. C 120 (30) (2016) 16658-16667 [28] L. Gong le, X.F. Feng, F. Luo, Novel azo-metal-organic framework showing a 10-connected bct net, breathing behavior, and unique photoswitching behavior toward CO2, Inorg. Chem. 54 (24) (2015)11587-11589 [29] S.C. Qi, Y. Liu, A.Z. Peng, D.M. Xue, X. Liu, X.Q. Liu, L.B. Sun, Fabrication of porous carbons from mesitylene for highly efficient CO2 capture:A rational choice improving the carbon loop, Chem. Eng. J. 361 (2019) 945-952 [30] Castellanos S, Goulet-Hanssens A, Zhao F, Dikhtiarenko A, Pustovarenko A, Hecht S, Gascon J, Kapteijn F, Bléger D, Structural effects in visible-light-responsive metal-organic frameworks incorporating ortho-fluoroazobenzenes, Chemistry 22 (2) (2016) 746-752 [31] A.Z. Peng, S.C. Qi, X. Liu, D.M. Xue, S.S. Peng, G.X. Yu, X.Q. Liu, L.B. Sun, N-doped porous carbons derived from a polymer precursor with a record-high N content:Efficient adsorbents for CO2 capture, Chem. Eng. J. 372 (2019) 656-664 [32] D.M. Xue, S.C. Qi, Q.Z. Zeng, R.J. Lu, J.H. Long, C. Luo, X.Q. Liu, L.B. Sun, Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor:Record-high adsorption capacity for indole, Chem. Eng. J. 374 (2019) 1005-1012 [33] W. An, D. Aulakh, X. Zhang, W. Verdegaal, K.R. Dunbar, M. Wriedt, Switching of adsorption properties in a zwitterionic metal-organic framework triggered by photogenerated radical triplets, Chem. Mater. 28 (21) (2016) 7825-7832 [34] R. Lyndon, K. Konstas, B.P. Ladewig, P.D. Southon, P.C.J. Kepert, M.R. Hill, Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release, Angew. Chem. Int. Ed. 52 (13) (2013) 3695-3698 [35] H.Q. Li, M.R. Hill, C. Doblin, S. Lim, A.J. Hill, P. Falcaro, Carbon capture:Visible light triggered CO2 liberation from silver nanocrystals incorporated metal-organic frameworks (adv. funct. mater. 27/2016), Adv. Funct. Mater. 26 (27) (2016) 4805 [36] L.L. Dang, X.J. Zhang, L. Zhang, J.Q. Li, F. Luo, X.F. Feng, Photo-responsive azo MOF exhibiting high selectivity for CO2 and xylene isomers, J. Coord. Chem. 69 (7) (2016) 1179-1187 [37] N. Prasetya, B.C. Donose, B.P. Ladewig, A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation, J. Mater. Chem. A 6 (34) (2018) 16390-16402 [38] D. Sensharma, N.Y. Zhu, S. Tandon, S. Vaesen, G.W. Watson, W. Schmitt, Flexible metal-organic frameworks for light-switchable CO2 sorption using an auxiliary ligand strategy, Inorg Chem 58 (15) (2019) 9766-9772 [39] L. Wang, Y. Yang, W.L. Shen, X.M. Kong, P. Li, J.G. Yu, A.E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Ind. Eng. Chem. Res. 52 (23) (2013) 7947-7955 [40] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manag. 37 (6-8) (1996) 929-933 [41] B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity, ACS Appl. Mater. Interfaces 10 (4) (2018) 4001-4009 |