[1] Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat Chem 9 (10) (2017) 1019-1024. https://www.ncbi.nlm.nih.gov/pubmed/28937667/ [2] J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide:an integrated review of catalysis and life cycle assessment, Chem. Rev. 118 (2) (2018) 434-504. Doi:10.1021/acs.chemrev.7b00435 [3] X. Ye, C.Y. Yang, X.L. Pan, J.G. Ma, Y.R. Zhang, Y.J. Ren, X.Y. Liu, L. Li, Y.Q. Huang, Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst, J. Am. Chem. Soc. 142 (45) (2020) 19001-19005. Doi:10.1021/jacs.0c08607 [4] S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes, C.A. Grimes, J.W. Jung, C.H. Cho, T. Majima, M.R. Hoffmann, S.I. In, CO2, water, and sunlight to hydrocarbon fuels:a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%, Energy Environ. Sci. 12 (9) (2019) 2685-2696. Doi:10.1039/C9EE00734B [5] A. Álvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes, Chem. Rev. 117 (14) (2017) 9804-9838. Doi:10.1021/acs.chemrev.6b00816 [6] Q.Y. Wang, S. Santos, C.A. Urbina-Blanco, W.Y. Hernández, M. Impéror-Clerc, E.I. Vovk, M. Marinova, O. Ersen, W. Baaziz, O.V. Safonova, A.Y. Khodakov, M. Saeys, V.V. Ordomsky, Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid, Appl. Catal. B:Environ. 290 (2021) 120036. Doi:10.1016/j.apcatb.2021.120036 [7] H. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu, H. Kawanami, Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts, Adv. Sustainable Syst. 2 (2) (2018) 1700161. Doi:10.1002/adsu.201700161 [8] R.Y. Sun, Y.H. Liao, S.T. Bai, M.Y. Zheng, C. Zhou, T. Zhang, B.F. Sels, Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate:from nanoscale to single atom, Energy Environ. Sci. 14 (3) (2021) 1247-1285. Doi:10.1039/d0ee03575k [9] L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts:from nanoparticles to single atoms, Chem. Rev. 120 (2) (2020) 683-733. Doi:10.1021/acs.chemrev.9b00230 [10].Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Y.Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Optimizing reaction paths for methanol synthesis from CO Optimizing reaction paths for methanol synthesis from CO 2 hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885.https://www.nature.com/articles/s41467-019-09918-z hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885 [11] K.W. Ting, T. Toyao, S.M.A.H. Siddiki, K.I. Shimizu, Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts, ACS Catal. 9 (4) (2019) 3685-3693. Doi:10.1021/acscatal.8b04821 [12] K. Mori, T. Taga, H. Yamashita, Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid, ACS Catal. 7 (5) (2017) 3147-3151. Doi:10.1021/acscatal.7b00312 [13] N.H.M. Dostagir, R. Rattanawan, M. Gao, J. Ota, J.Y. Hasegawa, K. Asakura, A. Fukouka, A. Shrotri, Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO, ACS Catal. 11 (15) (2021) 9450-9461. Doi:10.1021/acscatal.1c02041 [14] Y.F. Zhu, S.F. Yuk, J. Zheng, M.T. Nguyen, M.S. Lee, J. Szanyi, L. Kovarik, Z.H. Zhu, M. Balasubramanian, V.A. Glezakou, J.L. Fulton, J.A. Lercher, R. Rousseau, O.Y. Gutiérrez, Environment of metal-O-Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles, J. Am. Chem. Soc. 143 (14) (2021) 5540-5549. Doi:10.1021/jacs.1c02276 [15] Wu B, Yang R, Shi L, Lin T, Yu X, Huang M, Gong K, Sun F, Jiang Z, Li S, Zhong L, Sun Y, Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates, Chem Commun (Camb) 56 (93) (2020) 14677-14680.https://www.ncbi.nlm.nih.gov/pubmed/33165467/ [16] Z. Hu, X.F. Liu, D.M. Meng, Y. Guo, Y.L. Guo, G.Z. Lu, Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation, ACS Catal. 6 (4) (2016) 2265-2279. Doi:10.1021/acscatal.5b02617 [17] R.S. Peng, X.B. Sun, S.J. Li, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene, Chem. Eng. J. 306 (2016) 1234-1246. Doi:10.1016/j.cej.2016.08.056 [18] Q. Lin, K.I. Shimizu, A. Satsuma, Kinetic analysis of reduction process of supported Rh/Al2O3 catalysts by time resolved in situ UV-vis spectroscopy, Appl. Catal. A:Gen. 419-420 (2012) 142-147. Doi:10.1016/j.apcata.2012.01.021 [19] Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int. 39 (6) (2013) 6607-6610. Doi:10.1016/j.ceramint.2013.01.096 [20] G. Spezzati, Y. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation, ACS Catal. 7 (2017) 6887-6891 [21] G. Spezzati, A.D. Benavidez, A.T. DeLaRiva, Y. Su, J.P. Hofmann, S. Asahina, E.J. Olivier, J.H. Neethling, J.T. Miller, A.K. Datye, E.J.M. Hensen, CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets, Appl. Catal. B 243 (2019) 36-46 [22] Z. Li, Y. Feng, Y.L. Liang, C.Q. Cheng, C.K. Dong, H. Liu, X.W. Du, Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction, Adv. Mater. 32 (25) (2020) 1908521. Doi:10.1002/adma.201908521 [23] Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts, Nature 551 (7682) (2017) 605-608.https://www.ncbi.nlm.nih.gov/pubmed/29189776/ [24] Kwon Y, Kim TY, Kwon G, Yi J, Lee H, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J Am Chem Soc 139 (48) (2017) 17694-17699.https://www.ncbi.nlm.nih.gov/pubmed/29125746/ [25] T.B. Li, F. Chen, R. Lang, H. Wang, Y. Su, B.T. Qiao, A.Q. Wang, T. Zhang, Styrene hydroformylation with in situ hydrogen:regioselectivity control by coupling with the low-temperature water-gas shift reaction, Angew. Chem. Int. Ed. 59 (19) (2020) 7430-7434. Doi:10.1002/anie.202000998 [26] J. Scalbert, F.C. Meunier, C. Daniel, Y. Schuurman, An operando DRIFTS investigation into the resistance against CO2poisoning of a Rh/alumina catalyst during toluenehydrogenation, Phys. Chem. Chem. Phys. 14 (7) (2012) 2159-2163. Doi:10.1039/c1cp22620g [27] L.B. Wang, W.B. Zhang, S.P. Wang, Z.H. Gao, Z.H. Luo, X. Wang, R. Zeng, A.W. Li, H.L. Li, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, C. Ma, R. Si, J. Zeng, Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst, Nat. Commun. 7 (1) (2016) 1-8. Doi:10.1038/ncomms14036 [28] B. Wu, T.J. Lin, R.O. Yang, M. Huang, H. Zhang, J. Li, F.F. Sun, F. Song, Z. Jiang, L.S. Zhong, Y.H. Sun, Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene, Green Chem. 23 (13) (2021) 4753-4761. Doi:10.1039/d1gc01439k [29] N. Rui, Z.Y. Wang, K.H. Sun, J.Y. Ye, Q.F. Ge, C.J. Liu, CO2 hydrogenation to methanol over Pd/In2O3:effects of Pd and oxygen vacancy, Appl. Catal. B:Environ. 218 (2017) 488-497. Doi:10.1016/j.apcatb.2017.06.069 [30] B.B. Chen, C. Shi, M. Crocker, Y. Wang, A.M. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Appl. Catal. B:Environ. 132-133 (2013) 245-255. Doi:10.1016/j.apcatb.2012.11.028 [31] D. Luo, B.B. Chen, X.Y. Li, Z.J. Liu, X.W. Liu, X.H. Liu, C. Shi, X.S. Zhao, Three-dimensional nitrogen-doped porous carbon anchored CeO2 quantum dots as an efficient catalyst for formaldehyde oxidation, J. Mater. Chem. A 6 (17) (2018) 7897-7902. Doi:10.1039/c8ta00076j [32] X. Li, T.T. Qin, L.S. Li, B. Wu, T.J. Lin, L.S. Zhong, One-pot synthesis of acetals by tandem hydroformylation-acetalization of olefins using heterogeneous supported catalysts, Catal. Lett. 151 (9) (2021) 2638-2646. Doi:10.1007/s10562-020-03504-5 [33] D. Yang, W. Pei, S. Zhou, J.J. Zhao, W.P. Ding, Y. Zhu, Controllable conversion of CO2on non-metallic gold clusters, Angew. Chem. Int. Ed. 59 (5) (2020) 1919-1924. Doi:10.1002/anie.201913635 [34] J.H. Lee, J. Ryu, J.Y. Kim, S.W. Nam, J.H. Han, T.H. Lim, S. Gautam, K.H. Chae, C.W. Yoon, Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride, J. Mater. Chem. A 2 (25) (2014) 9490. Doi:10.1039/c4ta01133c [35] P.H. Pandey, H.S. Pawar, Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid, J. CO2 Util. 41 (2020) 101267. Doi:10.1016/j.jcou.2020.101267 [36] C.E. Mitchell, U. Terranova, I. Alshibane, D.J. Morgan, T.E. Davies, Q. He, J.S.J. Hargreaves, M. Sankar, N.H. de Leeuw, Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide, New J. Chem. 43 (35) (2019) 13985-13997. Doi:10.1039/c9nj02114k [37] Y. Kuwahara, Y. Fujie, H. Yamashita, Poly(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid, ChemCatChem 9 (11) (2017) 1906-1914. Doi:10.1002/cctc.201700508 [38] K.M.K. Yu, C.M.Y. Yeung, S.C. Tsang, Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nanocatalyst, J. Am. Chem. Soc. 129 (20) (2007) 6360-6361. Doi:10.1021/ja0706302 [39] Z.H. Zhang, L.Y. Zhang, S.Y. Yao, X.Z. Song, W.X. Huang, M.J. Hülsey, N. Yan, Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts, J. Catal. 376 (2019) 57-67. Doi:10.1016/j.jcat.2019.06.048 [40] S. Masuda, K. Mori, Y. Futamura, H. Yamashita, PdAg nanoparticles supported on functionalized mesoporous carbon:promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2, ACS Catal. 8 (3) (2018) 2277-2285. Doi:10.1021/acscatal.7b04099 [41] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B:Environ. 265 (2020) 118538. Doi:10.1016/j.apcatb.2019.118538 [42] F. Wang, S. He, H. Chen, B. Wang, L.R. Zheng, M. Wei, D.G. Evans, X. Duan, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc. 138 (19) (2016) 6298-6305. Doi:10.1021/jacs.6b02762 [43] Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu, C.H. Yan, Y.W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect, ACS Catal. 8 (7) (2018) 6203-6215. Doi:10.1021/acscatal.7b04469 |