[1] Y. Yang, H.P. Zhang, Y. Yan, Catalytic wet peroxide oxidation of m-cresol over novel Fe2O3loaded microfibrous entrapped CNT composite catalyst in a fixed-bed reactor, J. Chem. Technol. Biotechnol. 93 (9) (2018) 2552-2563 [2] Y.B. She, Y. Fan, L. Zhang, Y. Xu, M. Yu, H.Y. Fu, Selective aerobic oxidation of p-cresol with co-catalysts between metalloporphyrins and metal salts, Chin. J. Chem. Eng. 26 (7) (2018) 1493-1498 [3] O. Franchi, F. Rosenkranz, R. Chamy, Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula, Electron. J. Biotechnol. 35 (2018) 33-38 [4] S.W. Zhou, R. Xu, J.Z. He, Y.C. Huang, Z.J. Cai, M.G. Xu, Z.G. Song, Preparation of Fe-Cu-kaolinite for catalytic wet peroxide oxidation of 4-chlorophenol, Environ Sci Pollut Res Int 25 (5) (2018) 4924-4933 [5] A.H. Pizarro, C.B. Molina, M. Munoz, Z.M. de Pedro, N. Menendez, J.J. Rodriguez, Combining HDC and CWPO for the removal of p-chloro-m-cresol from water under ambient-like conditions, Appl. Catal. B:Environ. 216 (2017) 20-29 [6] Munoz, Helir-Joseph, Vallejo, Carlos, Blanco, Carolina, Gil, Antonio, Vicente, Miguel-Angel, Ramirez, Jose-Herney, Galeano, Luis-Alejandro. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry (2018) 20(22)5196-5208 [7] M.T. Pinho, H.T. Gomes, R.S. Ribeiro, J.L. Faria, A.M.T. Silva, Carbon nanotubes as catalysts for catalytic wet peroxide oxidation of highly concentrated phenol solutions:Towards process intensification, Appl. Catal. B:Environ. 165 (2015) 706-714 [8] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Catalytic wet peroxide oxidation:A route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review, Appl. Catal. B:Environ. 187 (2016) 428-460 [9] X.B. Hu, B.Z. Liu, Y.H. Deng, H.Z. Chen, S. Luo, C. Sun, P. Yang, S.G. Yang, Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution, Appl. Catal. B:Environ. 107 (3-4) (2011) 274-283 [10] Y.M. Wang, H.Z. Wei, P.J. Liu, Y. Yu, Y. Zhao, X.N. Li, W.T. Jiang, J.H. Wang, X. Yang, C.L. Sun, Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol, Catal. Today 258 (2015) 120-131 [11] R.P. Rocha, M.F.R. Pereira, J.L. Figueiredo, Carbon as a catalyst:Esterification of acetic acid with ethanol, Catal. Today 218-219 (2013) 51-56 [12] A. Rey, M. Faraldos, J.A. Casas, J.A. Zazo, A. Bahamonde, J.J. Rodríguez, Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts:Influence of iron precursor and activated carbon surface, Appl. Catal. B:Environ. 86 (1-2) (2009) 69-77 [13] H.T. Gomes, S.M. Miranda, M.J. Sampaio, A.M.T. Silva, J.L. Faria, Activated carbons treated with sulphuric acid:Catalysts for catalytic wet peroxide oxidation, Catal. Today 151 (1-2) (2010) 153-158 [14] A. Rey, A.B. Hungria, C.J. Duran-Valle, M. Faraldos, A. Bahamonde, J.A. Casas, J.J. Rodriguez, On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process, Appl. Catal. B:Environ. 181 (2016) 249-259 [15] W. Kohn, L.J. Sham, Self-consistent equations in cluding exchange and correlation effects, Phys. Rev. 140 (4A) (1965) A1133-A1138 [16] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B. 59 (3) (1999) 1758-1775 [17] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868 [18] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (7) (2011) 1456-1465 [19] W. Hu, C. Wang, H. Tan, H.L. Duan, G.N. Li, N. Li, Q.Q. Ji, Y. Lu, Y. Wang, Z.H. Sun, F.C. Hu, W.S. Yan, Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism, Nat. Commun. 12 (1) (2021) 1854 [20] M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on activated carbons:Influence of surface chemical groups, Carbon 41 (4) (2003) 811-821 [21] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Characterization of active sites on carbon catalysts, Ind. Eng. Chem. Res. 46 (12) (2007) 4110-4115 [22] A. Georgi, F.D. Kopinke, Interaction of adsorption and catalytic reactions in water decontamination processes:Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon, Appl. Catal. B:Environ. 58 (1-2) (2005) 9-18 [23] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide, Carbon 62 (2013) 97-108 [24] M. Noorjahan, V. Durga Kumari, M. Subrahmanyam, L. Panda, Immobilized Fe(III)-HY:An efficient and stable photo-Fenton catalyst, Appl. Catal. B:Environ. 57 (4) (2005) 291-298 [25] C. Moreno-Castilla, J. Rivera-Utrilla, M.V. López-Ramón, F. Carrasco-Marín, Adsorption of some substituted phenols on activated carbons from a bituminous coal, Carbon 33 (6) (1995) 845-851 [26] S.A. Messele, O.S.G.P. Soares, J.J.M. Órfão, F. Stüber, C. Bengoa, A. Fortuny, A. Fabregat, J. Font, Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol, Appl. Catal. B:Environ. 154-155 (2014) 329-338 [27] S.C. Wu, G.D. Wen, B.W. Zhong, B.S. Zhang, X.M. Gu, N. Wang, D.S. Su, Reduction of nitrobenzene catalyzed by carbon materials, Chin. J. Catal. 35 (6) (2014) 914-921 [28] L.F. Velasco, C.O. Ania, Understanding phenol adsorption mechanisms on activated carbons, Adsorption 17 (1) (2011) 247-254 [29] H.H. Huang, M.C. Lu, J.N. Chen, C.T. Lee, Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons, Chemosphere 51 (9) (2003) 935-943 [30] G. Centi, S. Perathoner, T. Torre, M.G. Verduna, Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts, Catal. Today 55 (1-2) (2000) 61-69 [31] W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems, Environ Sci Technol 37 (6) (2003) 1150-1158 [32] J.M. Peralta-Hernández, Y. Meas-Vong, F.J. Rodríguez, T.W. Chapman, M.I. Maldonado, L.A. Godínez, Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater:Decolorization and destruction of Orange II azo dye in dilute solution, Dye. Pigment. 76 (3) (2008) 656-662 [33] F. Duarte, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, L.M. Madeira, Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels, Appl. Catal. B:Environ. 85 (3-4) (2009) 139-147 [34] F. Duarte, F.J. Maldonado-Hódar, L.M. Madeira, New insight about orange II elimination by characterization of spent activated carbon/Fe Fenton-like catalysts, Appl. Catal. B:Environ. 129 (2013) 264-272 [35] Y. Yang, H.W. Xiang, L. Tian, H. Wang, C.H. Zhang, Z.C. Tao, Y.Y. Xu, B. Zhong, Y.W. Li, Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2, Appl. Catal. A:Gen. 284 (1-2) (2005) 105-122 [36] C.S. Castro, M.C. Guerreiro, L.C.A. Oliveira, M. Gonçalves, A.S. Anastácio, M. Nazzarro, Iron oxide dispersed over activated carbon:Support influence on the oxidation of the model molecule methylene blue, Appl. Catal. A:Gen. 367 (1-2) (2009) 53-58 [37] R.N. Olcese, M. Bettahar, D. Petitjean, B. Malaman, F. Giovanella, A. Dufour, Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst, Appl. Catal. B:Environ. 115-116 (2012) 63-73 [38] P.J. Liu, S.B. He, H.Z. Wei, J.H. Wang, C.L. Sun, Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m-cresol, Ind. Eng. Chem. Res. 54 (1) (2015) 130-136 [39] C.M. Domínguez, P. Ocón, A. Quintanilla, J.A. Casas, J.J. Rodriguez, Highly efficient application of activated carbon as catalyst for wet peroxide oxidation, Appl. Catal. B:Environ. 140-141 (2013) 663-670 |