[1] S.S. Raza, I. Janajreh, C. Ghenai, Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source, Appl. Energy136 (2014) 909-920 [2] A. Contreras, F. Posso, E. Guervos, Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela, Appl. Energy 87 (4) (2010) 1376-1385 [3] X.D. Wang, W.M. Yan, Y.Y. Duan, F.B. Weng, G.B. Jung, C.Y. Lee, Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field, Energy Convers. Manag. 51 (5) (2010) 959-968 [4] R. Boddu, U.K. Marupakula, B. Summers, P. Majumdar, Development of bipolar plates with different flow channel configurations for fuel cells, J. Power Sources 189 (2) (2009) 1083-1092 [5] S.R. Badduri, G.N. Srinivasulu, S.S. Rao, Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell, Chin. J. Chem. Eng. 28 (3) (2020) 824-831 [6] S.H. Han, N.H. Choi, Y.D. Choi, Study on the flooding phenomena and performance enhancement of PEM fuel cell applying a Concus-Finn condition, Renew. Energy 44 (2012) 88-98 [7] J. Bachman, A. Santamaria, H.Y. Tang, J.W. Park, Investigation of polymer electrolyte membrane fuel cell parallel flow field with induced cross flow, J. Power Sources 198 (2012) 143-148 [8] K. Jiao, J. Bachman, Y.B. Zhou, J.W. Park, Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell, Appl. Energy115 (2014) 75-82 [9] W.M. Yan, C.Y. Chen, S.C. Mei, C.Y. Soong, F.L. Chen, Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field, J. Power Sources 162 (2) (2006) 1157-1164 [10] H.C.Liu, W.M.Yan,C.Y.Soong, F.L.Chen,Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell, J. Power Sources142(2005)125-133 [11] A. Su, F.B. Weng, P.H. Chi, S.M. Lu, G.B. Jung, C.H. Tu, Y.M. Ferng, Effect of channel step-depth on the performance of proton exchange membrane fuel cells, Proc.Inst. Mech. Eng. Part A:J. Power Energy 221 (5) (2007) 617-625 [12] S.W. Perng, H.W. Wu, A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC, Appl. Energy 143 (2015) 81-95 [13] A. Ghanbarian, M.J. Kermani, Enhancement of PEM fuel cell performance by flow channel indentation, Energy Convers. Manag. 110 (2016) 356-366 [14] W. Yuan, Y. Tang, M.Q. Pan, Z.T. Li, B. Tang, Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renew. Energy 35 (3) (2010) 656-666 [15] G. Catlin, S.G. Advani, A.K. Prasad, Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm, J. Power Sources196 (22) (2011) 9407-9418 [16] A.D. Le, B. Zhou, A general model of proton exchange membrane fuel cell, J. Power Sources 182 (1) (2008) 197-222 [17] V. Gurau, H.T. Liu, S. Kakac, Two-dimensional model for proton exchange membrane fuel cells, AIChE J. 44 (11) (1998) 2410-2422 [18] W.K. Li, Q.L. Zhang, C. Wang, X.H. Yan, S.Y. Shen, G.F. Xia, F.J. Zhu, J.L. Zhang, Experimental and numerical analysis of a three-dimensional flow field for PEMFCs, Appl. Energy 195 (2017) 278-288 [19] S. Um, C.Y. Wang, K.S. Chen, Computational fluid dynamics modeling of proton exchange membrane fuel cells, J. Electrochem. Soc. 147 (12) (2000) 4485 [20] M. Secanell, A. Jarauta, A. Kosakian, M. Sabharwal, J. Zhou, PEM fuel cells, modeling, In:R.Meyers (eds.), Encyclopedia of Sustainability Science and Technology. Springer, New York, 2017 [21] G.H. Song, H. Meng, Numerical modeling and simulation of PEM fuel cells:Progress and perspective, Acta Mech. Sin. 29 (3) (2013) 318-334 [22] X.D. Wang, J.L. Xu, W.M. Yan, D.J. Lee, A. Su, Transient response of PEM fuel cells with parallel and interdigitated flow field designs, Int. J. Heat Mass Transf. 54 (11-12) (2011) 2375-2386 [23] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transf. 46 (24) (2003) 4595-4611 [24] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (1) (2003) 81-89 [25] C. Bao, W.G. Bessler, Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development, J. Power Sources275 (2015) 922-934 [26] J. Lobato, P. Cañizares, M.A. Rodrigo, F.J. Pinar, E. Mena, D. Úbeda, Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence, Int. J. Hydrog. Energy 35 (11) (2010) 5510-5520 [27] Y.M. Ferng, A. Su, A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance, Int. J. Hydrog. Energy 32 (17) (2007) 4466-4476 [28] X. Liu, H. Guo, F. Ye, C.F. Ma, Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells, Electrochimica Acta 52 (11) (2007) 3607-3614 |