[1] X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, X. H. Bao, Enhanced ethanol production inside Carbon-Nanotube reactors containing catalytic particles, Nat. Mater. 6 (2007) 507-511 [2] A. M. Henstra, J. Sipma, A. Rinzema, A. J. M. Stams, Microbiology of Synthesis gas Fermentation for Biofuel Production, Curr. Opin. Biotechnol. 18 (2007) 200-206 [3] V. Subramani, S. K. Gangwal, A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol, Energ. Fuel. 22 (2008) 814-839 [4] K. G. Fang, D. B. Li, M. G. Lin, M. L. Xiang, W. Wei, Y. H. Sun, A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas, Catal. Today 147 (2009) 133-138 [5] M. Gupta, M. L. Smith, J. J. Spivey, Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts, ACS Catal. 1 (2011) 641-656 [6] H. Yue, X. Ma, J. L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, Acc. Chem. Res. 47 (2014) 1483-1492 [7] Y. H. Zhao, K. Sun, X. F. Ma, J. X. Liu, D. P. Sun, H. Y. Su, W. X. Li, Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion, Angew. Chem. Int. Ed. 50 (2011) 5335-5338 [8] J. Schweicher, A. Bundhoo, N. Kruse, Hydrocarbon chain lengthening in catalytic CO hydrogenation:evidence for a CO insertion mechanism, J. Am. Chem. Soc. 134 (2012) 16135-16138 [9] T. Y. Chen, J. J. Su, Z. P. Zhang, C. X. Cao, X. Wang, R. Si, X. L. Liu, B. F. Shi, J. Xu, Y. F. Han, Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts, ACS Catal. 8 (2018) 8606-8617 [10] Y. P. Pei, J. X. Liu, Y. H. Zhao, Y. J. Ding, T. Liu, W. D. Dong, H. J. Zhu, H. Y. Su, L. Yan, J. L. Li, W. X. Li, High alcohols synthesis via Fischer-Tropsch reaction at Cobalt metal/Carbide interface, ACS Catal. 5 (2015) 3620-3624 [11] J. L. Gong, H. R. Yue, Y. J. Zhao, S. Zhao, L. Zhao, J. Lv, S. P. Wang, X. B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134 (2012) 13922-13925 [12] Y. M. Choi, P. Liu, Mechanism of ethanol synthesis from syngas on Rh(1 1 1), J. Am. Chem. Soc. 131 (2009) 13054-13061 [13] D. H. Mei, R. Rousseau, S. M. Kathmann, V. A. Glezakou, M. H. Engelhard, W. L. Jiang, C. M. Wang, M. A. Gerber, J. F. White, D. J. Stevens, Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:a combined experimental and theoretical modeling study, J. Catal. 271 (2010) 325-342 [14] V. R. Surisetty, I. Eswaramoorthi, A. K. Dalai, Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group VIII metals, Fuel 96 (2012) 77-84 [15] G. Prieto, S. Beijer, M. L. Smith, M. He, Y. Au, Z. Wang, D. A. Bruce, K. P. de Jong, J. J. Spivey, P. E. de Jongh, Design and synthesis of Copper-Cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols, Angew. Chem. 126 (2014) 6515-6519 [16] N. D. Subramanian, G. Balaji, C. S. S. R. Kumar, J. J. Spivey, Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas, Catal. Today 147 (2009) 100-106 [17] Z. H. Bao, K. Xiao, X. Z. Qi, X. X. Wang, L. S. Zhong, K. G. Fang, M. G. Lin, Y. H. Sun, Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH, J. Energy Chem. 22 (2013) 107-113 [18] J. J. Wang, Q. H. Zhang, Y. Wang, Rh-catalyzed syngas conversion to ethanol:Studies on the promoting effect of FeOx, Catal. Today 171 (1) (2011) 257-265 [19] H. M. Yin, Y. J. Ding, H. Y. Luo, H. J. Zhu, D. P. He, J. M. Xiong, L. W. Lin, Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation, Appl. Catal. A 243 (2003) 155-164 [20] R. Zhang, Y. H. Sun, S. Y. Peng, Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst, React. Kinet. Catal. Lett. 67 (1999) 95-102 [21] Y. Zhang, K. Zong, S. H. Yan, J. W. Liu, J. F. Shen, Catalytic hydrogenation of methyl glycolate to ethylene glycol, Chem. Ind. Eng. Prog. 30 (2011) 638-641 [22] X. C. Sun, R. G. Zhang, B. J. Wang, Insights into the preference of CHx(x=1-3) formation from CO hydrogenation on Cu(111) surface, Appl. Surf. Sci. 265 (2013) 720-730 [23] R. G. Zhang, X. C. Sun, B. J. Wang, Insight into the preference mechanism of CHx(x=1-3) and C-C Chain formation involved in C2 oxygenate formation from syngas on the Cu(110) surface, J. Phys. Chem. C 117 (2013) 6594-6606 [24] H. Y. Zheng, R. G. Zhang, Z. Li, B. J. Wang, Insight into the mechanism and possibility of ethanol formation from syngas on Cu(100) surface, J. Mol. Catal. A:Chem. 404 (2015) 115-130 [25] R. G. Zhang, C. Wei, W. S. Guo, Z. Q. Li, B. J. Wang, L. X. Ling, Syngas conversion to C2 oxygenates over the Cu/β-Mo2C catalyst:probing into the effect of the interface between Cu and β-Mo2C on catalytic performance, J. Phys. Chem. C 123 (2019) 21022-21030 [26] X. L. Zhao, K. Wu, W. P. Liao, Y. X. Wang, X. N. Hou, M. S. Jin, Z. H. Suo, H. Ge, Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol, Green Energy Environ. 4 (2019) 300-310 [27] D. Chen, L. L. Xu, H. Liu, J. Yang, Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction, Green Energy Environ. 4 (2019) 254-263 [28] J. Sun, Q. Cai, Y. Wan, S. L. Wan, L. Wang, J. D. Lin, D. H. Mei, Y. Wang, The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts, ACS Catal. 6 (2016) 5771-5785 [29] G. R. Wang, R. G. Zhang, B. J. Wang, Insight into the preference mechanism for C-C chain formation of C2 oxygenates and the effect of promoters in syngas conversion over Cu-based catalysts, Appl. Catal. A:Gen. 466 (2013) 77-89 [30] L. X. Ling, Q. Wang, R. G. Zhang, D. B. Li, B. J. Wang, Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst:insight into the role of Fe as a promoter, Phys. Chem. Chem. Phys. 19 (2017) 30883-30894 [31] R. G. Zhang, F. Liu, B. J. Wang, Co-decorated Cu alloy catalyst for C2 oxygenate and ethanol formation from syngas on Cu-based catalyst:insight into the role of Co and Cu as well as the improved selectivity, Catal. Sci. Technol. 6 (2016) 8036-8054 [32] R. G. Zhang, G. R. Wang, B. J. Wang, Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst, J. Catal. 305 (2013) 238-255 [33] R. G. Zhang, G. R. Wang, B. J. Wang, L. X. Ling, Insight into the effect of promoter Mn on ethanol formation from syngas on a Mn-promoted MnCu(211) surface:a comparison with a Cu(211) surface, J. Phys. Chem. C 118 (2014) 5243-5254 [34] L. W. Jiang, A study of metal-promoter orbital interactions and promoter effects on the CO activation over promoted Cu-based catalysts for methanol synthesis, J. Xia men Univ:Nat. Sci. 32 (1993) 462-467 [35] B. Hammer, The NO+CO reaction catalyzed by flat, stepped, and edged Pd surfaces, J. Catal. 199 (2001) 171-176 [36] V. Ponec, Alloy catalysts:the concepts, Appl. Catal. A:Gen. 222 (2001) 31-45 [37] L. C. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation, ACS Catal. 1 (2011) 365-384 [38] S. Dahl, E. Tornqvist, I. Chorkendorff, Dissociative adsorption of N2 on Ru(0001):a surface reaction totally dominated by steps, J. Catal. 192 (2000) 381-390 [39] K. Klier, J. S. Hess, R. G. Herman, Structure sensitivity of methane dissociation on palladium single crystal surfaces, J. Chem. Phys. 107 (1997) 4033-4043 [40] H. Uetsuka, K. Watanabe, H. Kimpara, K. Kunimori, Structure sensitivity in the kinetics and the dynamics of CO oxidation over stepped Pd(335) studied by the molecular beam infrared chemiluminescence technique:determination of working site during the steady-state reaction, Langmuir, 15 (1999) 5795-5799 [41] Z. P. Liu, S. J. Jenkins, D. A. King, Step-enhanced selectivity of NO reduction on platinum-group metals, J. Am. Chem. Soc. 125 (2003) 14660-14661 [42] T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Identification of the ″active sites″ of a surface-catalyzed reaction, Science 273 (1996) 1688-1690 [43] Y. Xu, M. Mavrikakis, Adsorption and dissociation of O2 on gold surfaces:effect of steps and Strain, J. Phys. Chem. B 107 (2003) 9298-9307 [44] Z. P. Liu, P. Hu, General rules for predicting where a catalytic reaction should occur on metal surfaces:a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, kinked metal surfaces, J. Am. Chem. Soc. 125 (2003) 1958-1967 [45] J. Zhang, X. M. Cao, P. Hu, Z. Y. Zhong, A. Borgna, P. Wu, Density functional theory studies of ethanol decomposition on Rh(211), J. Phys. Chem. C 115 (2011) 22429-22437 [46] M. Mavrikakis, M. Bäumer, H. J. Freund, J. K. Nørskov, Structure sensitivity of CO dissociation on Rh surfaces, Catal. Lett. 81 (2002) 153-156 [47] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts, Science 336 (2012) 893-897 [48] I. Tezsevin, S. Senkan, I. Onal, D. Düzenli, DFT study on the hydrogenation of CO2 to methanol on Ho-doped Cu(211) surface, J. Phys. Chem. C 124 (2020) 22426-22434 [49] Y. H. Zhao, M. M. Yang, D. P. Sun, H. Y. Su, K. J. Sun, X. F. Ma, X. H. Bao, W. X. Li, Rh-decorated Cu alloy catalyst for improved C2 oxygenate formation from Syngas, J. Phys. Chem. C 115 (2011) 18247-18256 [50] F. Y. Li, D. E. Jiang, X. C. Zeng, Z. F. Chen, Mn monolayer modified Rh for syngas-to-ethanol conversion:a first-principles study, Nanoscale 4 (2012) 1123-1129 [51] (a) G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B:Condens. Matter, 47 (1993) 558-561. (b) G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B:Condens. Matter 49 (1994) 14251-14269. [52] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6 (1996) 15-50 [53] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B:Condens. Matter 54 (1996) 11169-11186 [54] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864-B871 [55] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133 [56] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9978-9985 [57] G. Henkelman, B. P. Uberuaga, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9901-9904 [58] M. G. Lin, K. G. Fang, D. B. Li, Y. H. Sun, CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts, Catal. Commun. 9 (2008) 1869-1873 [59] Q. Fu, W. X. Li, Y. X. Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K Gu., L. M. Chen, Z. Wang, H. Zhang, B Wang, X. H. Bao, Interface-confined ferrous centers for catalytic oxidation, Science. 328 (2010) 1141-1144 [60] H. J. Xi, X. N. Hou, Y. J. Liu, S. J Qing, Z. X. Gao, Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming, Angew. Chem. Int. Ed. 53 (2014) 11886-11889 [61] N. Kapur, J. Hyun, B. Shan, J. B. Nicholas, K. Cho, Ab initio study of CO hydrogenation to oxygenates on reduced Rh terraces and stepped surfaces, J. Phys. Chem. C 114 (2010) 10171-10182 [62] J. D. Li, E. Croiset, L. Ricardez-Sandoval, Carbon clusters on the Ni(111) surface:a density functional theory study, Phys. Chem. Chem. Phys. 16 (2014) 2954-2961 |