[1] İ.A. Reşitoğlu, K. Altinişik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technol. Environ. Policy, 17 (1) (2015) 15-27 [2] Y. Çelebi, H. Aydın, An overview on the light alcohol fuels in diesel engines, Fuel, 236 (2019) 890-911 [3] Z.H. Zhang, R. Balasubramanian, Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine, Fuel, 141 (2015) 1-8 [4] Z. Guo, H. Guo, Q. Zeng, Investigation on di-(2-Methoxypropyl) carbonate used as a clean oxygenated fuel for diesel Engine, J. Energy Resour. Technol., 140 (1) (2017) 012201 [5] J. Wei, Y. Zeng, M. Pan, Y. Zhuang, L. Qiu, T. Zhou, Y. Liu, Morphology analysis of soot particles from a modern diesel engine fueled with different types of oxygenated fuels, Fuel, 267 (2020) 117248 [6] L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus, J. Sauer, Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers, Fuel, 173 (2016) 129-137 [7] C.J. Baranowski, A.M. Bahmanpour, O. Kröcher, Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review, Appl. Catal. B., 217 (2017) 407-420 [8] B. Lumpp, D. Rothe, C. Pastötter, R. Lämmermann, E. Jacob, Oxymethylene ethers as diesel fuel additives of the future, MTZ Worldw, 72 (3) (2011) 34-38 [9] J. Liu, H. Wang, Y. Li, Z. Zheng, Z. Xue, H. Shang, M. Yao, Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine, Fuel, 177 (2016) 206-216 [10] H. Liu, Z. Wang, J. Zhang, J. Wang, S. Shuai, Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines, Appl. Energy, 185 (2017) 1393-1402 [11] H. Liu, Z. Wang, J. Wang, X. He, Y. Zheng, Q. Tang, J. Wang, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends, Energy, 88 (2015) 793-800 [12] W. Ahmad, F.L. Chan, A. Hoadley, H.T. Wang, A. Tanksale, Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts, Appl. Catal. B, 269 (2020) 118765 [13] D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde, Chem. Eng. Sci., 163 (2017) 92-104 [14] B.Y. Wang, X.M. Yan, X.Y. Zhang, H.Y. Zhang, F.P. Li, Citric acid-modified beta zeolite for polyoxymethylene dimethyl ethers synthesis:The textural and acidic properties regulation, Appl. Catal. B, 266 (2020) 118645 [15] P. Haltenort, K. Hackbarth, D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane, Catal. Commun., 109 (2018) 80-84 [16] F. Liu, T. Wang, Y. Zheng, J. Wang, Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42-/TiO2 catalysts, J. Catal., 355 (2017) 17-25 [17] R. Wang, Z. Wu, Z. Qin, C. Chen, H. Zhu, J. Wu, G. Chen, W. Fan, J. Wang, Graphene oxide:an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene, Catal. Sci. Technol., 6 (4) (2016) 993-997 [18] Y. Zheng, Q. Tang, T. Wang, J. Wang, Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin, Chem. Eng. Sci., 134 (2015) 758-766 [19] J. Burger, M. Siegert, E. Ströfer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts, Fuel, 89 (11) (2010) 3315-3319 [20] H. Schelling, E. Stroefer, R. Pinkos, A. Haunert, G.-D. Tebben, H. Hasse, S. Blagov, Method for producing polyoxymethylene dimethyl ethers, US Pat., 0260094A1 (2007). [21] E. Stroefer, H. Hasse, S. Blagov, Process for preparing polyoxymethylene dimethyl ethers from methanol and formaldehyde, US Pat., 7700809B2 (2010). [22] H. Song, M. Kang, F. Jin, G. Wang, Z. Li, J. Chen, Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers, Chin. J. Catal., 38 (5) (2017) 853-861 [23] D. Wang, F. Zhao, G. Zhu, C. Xia, Production of eco-friendly poly(oxymethylene) dimethyl ethers catalyzed by acidic ionic liquid:A kinetic investigation, Chem. Eng. J., 334 (2018) 2616-2624 [24] R. Peláez, P. Marín, S. Ordóñez, Synthesis of poly (oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins:a kinetic study, Chem. Eng. J., 396 (2020) 125305 [25] X.-J. Gao, W.-F. Wang, Y.-Y. Gu, Z.-Z. Zhang, J.-F. Zhang, Q.-D. Zhang, N. Tsubaki, Y.-Z. Han, Y.-S. Tan, Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts, ChemCatChem, 10 (1) (2018) 273-279 [26] Y. Kim, J. Kim, H.W. Kim, T.-W. Kim, H.J. Kim, H. Chang, M.B. Park, H.-J. Chae, Sulfated tin oxide as highly selective catalyst for the chlorination of methane to methyl chloride, ACS Catal., 9 (10) (2019) 9398-9410 [27] Z. Zhang, J. Huang, H. Xia, Q. Dai, Y. Gu, Y. Lao, X. Wang, Chlorinated volatile organic compound oxidation over SO42-/Fe2O3 catalysts, J. Catal., 360 (2018) 277-289 [28] X. Zhang, H. Lu, K. Wu, Y. Liu, C. Liu, Y. Zhu, B. Liang, Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42--TiO2 in water-ethanol solvent, Chin. J. Chem. Eng., 28 (1) (2020) 136-142 [29] K. Saravanan, B. Tyagi, R.S. Shukla, H. Bajaj, Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst, Appl. Catal. B, 172 (2015) 108-115 [30] H. Li, H. Song, F. Zhao, L. Chen, C. Xia, Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania, J. Energy Chem., 24 (2) (2015) 239-244 [31] H. Li, H. Song, L. Chen, C. Xia, Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis:the acid sites control and reaction pathways, Appl. Catal. B, 165 (2015) 466-476 [32] H. Li, Y. Li, T. Guo, J. Zhang, L. He, The green and expeditious synthesis of sulfated titania with enhanced catalytic activity in polyoxymethylene dimethyl ethers synthesis, React. Kinet., Mech. Catal., 124 (1) (2018) 139-151 [33] V.S. Marakatti, S. Marappa, E.M. Gaigneaux, Sulfated zirconia:an efficient catalyst for the Friedel-Crafts monoalkylation of resorcinol with methyl tertiary butyl ether to 4-tertiary butylresorcinol, New J. Chem., 43 (20) (2019) 7733-7742 [34] X. Zhang, A.I. Rabee, M. Isaacs, A.F. Lee, K. Wilson, Sulfated zirconia catalysts for D-sorbitol cascade cyclodehydration to isosorbide:impact of zirconia phase, ACS Sustainable Chem. Eng., 6 (11) (2018) 14704-14712 [35] K. Saravanan, B. Tyagi, H.C. Bajaj, Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol, Appl. Catal. B, 192 (2016) 161-170 [36] Y. Luo, Z. Mei, N. Liu, H. Wang, C. Han, S. He, Synthesis of mesoporous sulfated zirconia nanoparticles with high surface area and their applies for biodiesel production as effective catalysts, Catal. Today, 298 (2017) 99-108 [37] P. Wang, Y. Yue, T. Wang, X. Bao, Alkane isomerization over sulfated zirconia solid acid system, Int. J. Energy Res., 44 (5) (2020) 3270-3294 [38] U. Ciesla, M. Froba, G.D. Stucky, F. Schuth, Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate, Chem. Mater., 11 (2) (1999) 227-234 [39] A. Osatiashtiani, A.F. Lee, D.R. Brown, J.A. Melero, G. Morales, K. Wilson, Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose, Catal. Sci. Technol., 4 (2) (2014) 333-342 [40] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, New York, (1982) [41] Y. Qu, Y. Zhao, S. Xiong, C. Wang, S. Wang, L. Zhu, L. Ma, Conversion of glucose into 5-Hydroxymethylfurfural and levulinic acid catalyzed by SO42-/ZrO2 in a biphasic solvent system, Energy Fuels, 34 (9) (2020) 11041-11049 [42] X. Yang, F.C. Jentoft, R.E. Jentoft, F. Girgsdies, T. Ressler, Sulfated zirconia with ordered mesopores as an active catalyst for n-Butane isomerization, Catal. Lett., 81 (1) (2002) 25-31 [43] C.Y. Tai, B.-Y. Hsiao, H.-Y. Chiu, Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion, Colloids Surf., A, 237 (1-3) (2004) 105-111 [44] A. Sinhamahapatra, N. Sutradhar, M. Ghosh, H.C. Bajaj, A.B. Panda, Mesoporous sulfated zirconia mediated acetalization reactions, Appl. Catal., A, 402 (1-2) (2011) 87-93 [45] N. Liu, X. Guo, A. Navrotsky, L. Shi, D. Wu, Thermodynamic complexity of sulfated zirconia catalysts, J. Catal., 342 (2016) 158-163 [46] S. Labidi, M. Ben Amar, J.-P. Passarello, B. Le Neindre, A. Kanaev, Design of novel sulfated nanozirconia catalyst for biofuel synthesis, Ind. Eng. Chem. Res., 56 (6) (2017) 1394-1403 [47] Y. Zhang, W.-T. Wong, K.-F. Yung, Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia, Appl. Energy, 116 (2014) 191-198 [48] M.K. Mishra, B. Tyagi, R.V. Jasra, Effect of synthetic parameters on structural, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique, Ind. Eng. Chem. Res., 42 (23) (2003) 5727-5736 [49] A.F. Bedilo, K.J. Klabunde, Synthesis of catalytically active sulfated zirconia aerogels, J. Catal., 176 (2) (1998) 448-458 [50] Z. Ma, X. Meng, N. Liu, C. Yang, L. Shi, Preparation, characterization, and isomerization catalytic performance of palladium loaded zirconium hydroxide/sulfated zirconia, Ind. Eng. Chem. Res., 57 (43) (2018) 14377-14385 [51] H. Matsuhashi, H. Nakamura, T. Ishihara, S. Iwamoto, Y. Kamiya, J. Kobayashi, Y. Kubota, T. Yamada, T. Matsuda, K. Matsushita, Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions, Appl. Catal., A, 360 (1) (2009) 89-97 [52] Y. Zhang, T. Chen, G. Zhang, G. Wang, H. Zhang, Mesoporous Al-promoted sulfated zirconia as an efficient heterogeneous catalyst to synthesize isosorbide from sorbitol, Appl. Catal., A, 562 (2018) 258-266 [53] V.G. Deshmane, Y.G. Adewuyi, Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils, Appl. Catal., A, 462 (2013) 196-206 [54] S. Ardizzone, C.L. Bianchi, G. Cappelletti, F. Porta, Liquid-phase catalytic activity of sulfated zirconia from sol-gel precursors:the role of the surface features, J. Catal., 227 (2) (2004) 470-478 [55] H. Wang, Y. Li, F. Yu, Q. Wang, B. Xing, D. Li, R. Li, A stable mesoporous super-acid nanocatalyst for eco-friendly synthesis of biodiesel, Chem. Eng. J., 364 (2019) 111-122 [56] M.S. La Ore, K. Wijaya, W. Trisunaryanti, W.D. Saputri, E. Heraldy, N.W. Yuwana, P.L. Hariani, A. Budiman, S. Sudiono, The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel, J. Environ. Chem. Eng., 8 (5) (2020) 104205 [57] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 141 (2) (1993) 347-354 [58] Q.-H. Xia, K. Hidajat, S. Kawi, Synthesis of SO42-/ZrO2/MCM-41 as a new superacid catalyst, Chem. Commun., (22) (2000) 2229-2230 [59] Z. Ma, X. Meng, C. Yang, N. Liu, Y. Zhang, L. Shi, Study of high-aluminum-content sulfated zirconia:influence of aluminum content and washing, Ind. Eng. Chem. Res., 56 (19) (2017) 5598-5606 [60] K.T. Lee, Y.S. Jung, S.M. Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, J. Am. Chem. Soc., 125 (19) (2003) 5652-5653 [61] N. Schmitz, J. Burger, H. Hasse, Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res., 54 (50) (2015) 12553-12560 [62] C.J. Baranowski, M. Roger, A.M. Bahmanpour, O. Kröcher, Nature of synergy between Brønsted and Lewis acid sites in Sn-Beta zeolites for polyoxymethylene dimethyl ethers synthesis, ChemSusChem, 12 (19) (2019) 4421-4431 [63] A. Fink, C.H. Gierlich, I. Delidovich, R. Palkovits, Systematic Catalyst screening of zeolites with various frameworks and Si/Al ratios to identify optimum acid strength in OME synthesis, ChemCatChem, 12 (22) (2020) 5710-5719 [64] Z. Xue, C. Lu, H. Shang, G. An, J. Zhang, S. Zhao, Y. Liu, Synthesis of polyoxymethylene dimethyl ethers over different microporous and mesoporous zeolites:the effects of acidity and pore size, New J. Chem., 44 (7) (2020) 2788-2796 [65] S. Hammache, J.G. Goodwin Jr., Characteristics of the active sites on sulfated zirconia for n-butane isomerization, J. Catal., 218 (2) (2003) 258-266 [66] X. Li, J. Cao, M.A. Nawaz, D. Liu, Synergy of Lewis and Brønsted acid sites for polyoxymethylene dimethyl ether synthesis from methanol and formaldehyde solution over Zr4+ modified sulfonated resin, Fuel, 289 (2021) 119867 [67] C. Pezzotta, V.S. Marakatti, E.M. Gaigneaux, Role of Lewis and Brønsted acid sites in resorcinol tert-butylation over heteropolyacid-based catalysts, Catal. Sci. Technol., 10 (23) (2020) 7984-7997 |