[1] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem. Soc. Rev. 49(2020) 1385–1413. [2] A.H. Liu, J. Gao, L.N. He, Catalytic activation and conversion of carbon dioxide into fuels/value-added chemicals through CC bond formation, in: New and Future Developments in Catalysis, Elsevier, Amsterdam, 2013, pp. 81–147. [3] K.Z. Li, J.G. Chen, CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy, ACS Catal. 9(9) (2019) 7840–7861. [4] X. Jiang, X.W. Nie, X.W. Guo, C.S. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120(15) (2020) 7984–8034. [5] Y.J. Zhao, S. Zhao, Y.C. Geng, Y.L. Shen, H.R. Yue, J. Lv, S.P. Wang, X.B. Ma, Nicontaining Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate, Catal. Today 276(2016) 28–35. [6] H.H. Yang, Y.Y. Chen, X.J. Cui, G.F. Wang, Y.L. Cen, T.S. Deng, W.J. Yan, J. Gao, S. H. Zhu, U. Olsbye, J.G. Wang, W.B. Fan, A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation, Angew. Chem. Int. Ed. Engl. 57(7) (2018) 1836–1840. [7] X. Chen, Y. Cui, C. Wen, B. Wang, W.L. Dai, Continuous synthesis of methanol: Heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system, Chem. Commun. (Camb.) 51(72) (2015) 13776–13778. [8] J.J. Liu, P. He, L.G. Wang, H. Liu, Y. Cao, H.Q. Li, An efficient and stable Cu/SiO2 catalyst for the syntheses of ethylene glycol and methanol via chemoselective hydrogenation of ethylene carbonate, Chin. J. Catal. 39(8) (2018) 1283–1293. [9] C. Lian, F. Ren, Y. Liu, G. Zhao, Y. Ji, H. Rong, W. Jia, L. Ma, H. Lu, D. Wang, Y. Li, Heterogeneous selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over a copper chromite nanocatalyst, Chem. Commun. (Camb.) 51(7) (2015) 1252–1254. [10] C.L. Huang, J.J. Wen, Y.H. Sun, M.Y. Zhang, Y.F. Bao, Y.D. Zhang, L. Liang, M.L. Fu, J.L. Wu, D.Q. Ye, L.M. Chen, CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology, Chem. Eng. J. 374(2019) 221–230. [11] A. Bansode, A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products, J. Catal. 309(2014) 66–70. [12] A. Goeppert, M. Czaun, J.P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products-closing the loop, Chem. Soc. Rev. 43(23) (2014) 7995–8048. [13] V. Zubar, Y. Lebedev, L.M. Azofra, L. Cavallo, O. El-Sepelgy, M. Rueping, Hydrogenation of CO2-derived carbonates and polycarbonates to methanol and diols by metal-ligand cooperative manganese catalysis, Angew. Chem. 130(41) (2018) 13627–13631. [14] D.S. Bai, Q. Wang, Y.Y. Song, B. Li, H.W. Jing, Synthesis of cyclic carbonate from epoxide and CO2 catalyzed by magnetic nanoparticle-supported porphyrin, Catal. Commun. 12(7) (2011) 684–688. [15] M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2, Green Chem. 12(9) (2010) 1514. [16] A. Zanon, S. Chaemchuen, B. Mousavi, F. Verpoort, 1 Zn-doped ZIF-67 as catalyst for the CO2 fixation into cyclic carbonates, J. CO2 Util. 20(2017) 282–291. [17] Z.B. Han, L.C. Rong, J. Wu, L. Zhang, Z. Wang, K.L. Ding, Catalytic hydrogenation of cyclic carbonates: A practical approach from CO2 and epoxides to methanol and diols, Angew. Chem. Int. Ed. Engl. 51(52) (2012) 13041–13045. [18] H.L. Liu, Z.W. Huang, Z.B. Han, K.L. Ding, H.C. Liu, C.G. Xia, J. Chen, Efficient productionofmethanolanddiols viathehydrogenationofcycliccarbonatesusing copper–silica nanocomposite catalysts, Green Chem. 17(8) (2015) 4281–4290. [19] J. Kim, N. Pfänder, G. Prieto, Recycling of CO2 by hydrogenation of carbonate derivatives to methanol: Tuning copper-oxide promotion effects in supported catalysts, ChemSusChem 13(8) (2020) 2043–2052. [20] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134(34) (2012) 13922–13925. [21] H.R. Yue, X.B. Ma, J.L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, ACC Chem. Res. 47(5) (2014) 1483–1492. [22] Y. Wang, Y.L. Shen, Y.J. Zhao, J. Lv, S.P. Wang, X.B. Ma, Insight into the balancing effect of active Cu species for hydrogenation of carbon–oxygen bonds, ACS Catal. 5(10) (2015) 6200–6208. [23] M.J. Zhang, Y.W. Yang, A.T. Li, D.W. Yao, Y.Q. Gao, B.A. Fayisa, M.Y. Wang, S.Y. Huang,J.Lv,Y.Wang,X.B.Ma,Coverfeature:Nanoflower-likeCu/SiO2catalystfor hydrogenation of ethylene carbonateto methanol and ethylene glycol: Enriching H2 adsorption (ChemCatChem 14/2020), ChemCatChem 12(14) (2020) 3599. [24] W. Chen, T.Y. Song, J.X. Tian, P. Wu, X.H. Li, An efficient Cu-based catalyst for the hydrogenation of ethylene carbonate to ethylene glycol and methanol, Catal. Sci. Technol. 9(23) (2019) 6749–6759. [25] Y.W. Yang, D.W. Yao, M.J. Zhang, A.T. Li, Y.Q. Gao, B.A. Fayisa, M.Y. Wang, S.Y. Huang, Y. Wang, X.B. Ma, Efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol over Mo-doped Cu/SiO2 catalyst, Catal. Today 371(2021) 113–119. [26] Y. Ding, J.X. Tian, W. Chen, Y.J. Guan, H. Xu, X.H. Li, H.H. Wu, P. Wu, One-pot synthesized core/shell structured zeolite@copper catalysts for selective hydrogenation of ethylene carbonate to methanol and ethylene glycol, Green Chem. 21(19) (2019) 5414–5426. [27] Y.J. Zhao, S.M. Li, Y. Wang, B. Shan, J. Zhang, S.P. Wang, X.B. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313(2017) 759–768. [28] Z.H. Ren, M.N. Younis, C.S. Li, Z.X. Li, X.G. Yang, G.Y. Wang, Highly active Ce, Y, La-modified Cu/SiO2 catalysts for hydrogenation of methyl acetate to ethanol, RSC Adv. 10(10) (2020) 5590–5603. [29] D.W. Yao, Y. Wang, K. Hassan-Legault, A.T. Li, Y.J. Zhao, J. Lv, S.Y. Huang, X.B. Ma, Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst, ACS Catal. 9(4) (2019) 2969–2976. [30] C.J. Yang, Z.L. Miao, F. Zhang, L. Li, Y.T. Liu, A.Q. Wang, T. Zhang, Hydrogenolysis of methyl glycolate to ethanol over a Pt–Cu/SiO2single-atom alloy catalyst: A further step from cellulose to ethanol, Green Chem. 20(9) (2018) 2142–2150. [31] X.L. Zheng, H.Q. Lin, J.W. Zheng, H. Ariga, K. Asakura, Y.Z. Yuan, Pt-promoted Cu/SBA-15 catalysts with excellent performance for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, Top. Catal. 57(10–13) (2014) 1015–1025. [32] X.L. Zheng, H.Q. Lin, J.W. Zheng, X.P. Duan, Y.Z. Yuan, Lanthanum oxidemodified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, ACS Catal. 3(12) (2013) 2738–2749. [33] T.Y. Song, W. Chen, Y.Y. Qi, J.Q. Lu, P. Wu, X.H. Li, Efficient synthesis of methanol and ethylene glycol via the hydrogenation of CO2-derived ethylene carbonate on Cu/SiO2 catalysts with balanced Cu+–Cu0 sites, Catal. Sci. Technol. 10(15) (2020) 5149–5162. [34] J.X. Tian, W. Chen, P. Wu, Z.R. Zhu, X.H. Li, Cu–Mg–Zr/SiO2 catalyst for the selective hydrogenation of ethylene carbonate to methanol and ethylene glycol, Catal. Sci. Technol. 8(10) (2018) 2624–2635. [35] H.B. Li, Y.Y. Cui, Y.X. Liu, L. Zhang, Q. Zhang, J.H. Zhang, W.L. Dai, Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by coammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate, J. Mater. Sci. Technol. 47(2020) 29–37. [36] X. Wei, A.Q. Wang, X.F. Yang, L. Li, T. Zhang, Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1, 2-dichloroethane, Appl. Catal. B: Environ. 121–122(2012) 105–114. [37] C. Lentz, S.P. Jand, J. Melke, C. Roth, P. Kaghazchi, DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations, J. Mol. Catal. A: Chem. 426(2017) 1–9. [38] W. Zhou, Y. Li, X.F. Wang, D.W. Yao, Y. Wang, S.Y. Huang, W. Li, Y.J. Zhao, S.P. Wang, X.B. Ma, Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis, J. Catal. 388(2020) 154–163. [39] G.D. Sun, Z.J. Zhao, R.T. Mu, S.J. Zha, L.L. Li, S. Chen, K.T. Zang, J. Luo, Z.L. Li, S.C. Purdy, A.J. Kropf, J.T. Miller, L. Zeng, J.L. Gong, Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation, Nat. Commun. 9(1) (2018) 4454. [40] R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloy catalysis, Chem. Rev. 120(21) (2020) 12044–12088. [41] B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang, Y.T. Cui, J.Y. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx, Nat. Chem. 3(8) (2011) 634–641. [42] S. Gwo, H.Y. Chen, M.H. Lin, L.Y. Sun, X.Q. Li, Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics, Chem. Soc. Rev. 45(20) (2016) 5672–5716. [43] G.X. Pei, X.Y. Liu, X. Yang, L. Zhang, A. Wang, L. Li, H. Wang, X. Wang, T. Zhang, Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions, ACS Catal. 7(2017) 1491–1500. [44] F.R. Lucci, M.D. Marcinkowski, T.J. Lawton, E.C.H. Sykes, H2 activation and spillover on catalytically relevant Pt–Cu single atom alloys, J. Phys. Chem. C 119(43) (2015) 24351–24357. [45] G.Q. Cui, X. Zhang, H. Wang, Z.Y. Li, W.L. Wang, Q. Yu, L.R. Zheng, Y.D. Wang, J. H. Zhu, M. Wei, ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation, Appl. Catal. B: Environ. 280(2021) 119406. [46] Q. Liu, Z.L. Zhang, Platinum single-atom catalysts: A comparative review towards effective characterization, Catal. Sci. Technol. 9(18) (2019) 4821–4834. [47] Y.L. Guo, R. Lang, B.T. Qiao, Highlights of major progress on single-atom catalysis in 2017, Catalysts 9(2) (2019) 135. [48] M.D. Marcinkowski, J.L. Liu, C.J. Murphy, M.L. Liriano, N.A. Wasio, F.R. Lucci, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Selective formic acid dehydrogenation on Pt-Cu single-atom alloys, ACS Catal. 7(1) (2017) 413–420. [49] L. Tian, Z. Li, X.N. Xu, C. Zhang, Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis, J. Mater. Chem. A 9(23) (2021) 13459–13470. [50] J.L. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski, A.J. Therrien, C.T. Williams, E.C.H. Sykes, M. Flytzani-Stephanopoulos, Tackling CO poisoning with single-atom alloy catalysts, J. Am. Chem. Soc. 138(20) (2016) 6396–6399. [51] F.R. Lucci, J.L. Liu, M.D. Marcinkowski, M. Yang, L.F. Allard, M. FlytzaniStephanopoulos, E.C. Sykes, Selective hydrogenation of 1, 3-butadiene on platinum-copper alloys at the single-atom limit, Nat. Commun. 6(2015) 8550. [52] X. Zhang, G.Q. Cui, H.S. Feng, L.F. Chen, H. Wang, B. Wang, X. Zhang, L.R. Zheng, S. Hong, M. Wei, Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis, Nat. Commun. 10(1) (2019) 5812. |