[1] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44 (15) (2015) 5016–5030.10.1039/c4cs00423j [2] B. Mi, Materials science. Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740–742.https://pubmed.ncbi.nlm.nih.gov/24531961/ [3] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (6067) (2012) 442–444.https://pubmed.ncbi.nlm.nih.gov/22282806/ [4] Y. Liu, Y. Huang, X.F. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature 567 (7748) (2019) 323–333.https://pubmed.ncbi.nlm.nih.gov/30894723/ [5] F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (16) (2015) 5861–5896.https://pubmed.ncbi.nlm.nih.gov/25812036/ [6] G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: A review, Water Res. 126 (2017) 385–398.http://dx.doi.org/10.1016/j.watres.2017.08.010 [7] O.G. Apul, Q.L. Wang, Y. Zhou, T. Karanfil, Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon, Water Res. 47 (4) (2013) 1648–1654.http://dx.doi.org/10.1016/j.watres.2012.12.031 [8] J. Wang, B.L. Chen, B.S. Xing, Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants, Environ. Sci. Technol. 50 (7) (2016) 3798–3808.https://pubmed.ncbi.nlm.nih.gov/26938576/ [9] H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Enhanced Cr(vi) removal using iron nanoparticle decorated graphene, Nanoscale 3 (9) (2011) 3583.10.1039/c1nr10549c [10] M.H. Xu, J. Chai, N.T. Hu, D. Huang, Y.X. Wang, X.L. Huang, H. Wei, Z. Yang, Y.F. Zhang, Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions, Nanotechnology 25 (39) (2014) 395602.https://pubmed.ncbi.nlm.nih.gov/25208570/ [11] G.X. Zhao, J.X. Li, X.M. Ren, C.L. Chen, X.K. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45 (24) (2011) 10454–10462.https://pubmed.ncbi.nlm.nih.gov/22070750/ [12] P. Yu, H.-Q. Wang, R.-Y. Bao, Z. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Self-Assembled Sponge-like Chitosan/Reduced Graphene Oxide/Montmorillonite Composite Hydrogels without Cross-Linking of Chitosan for Effective Cr(VI) Sorption, ACS Sustain. Chem. Eng. 5 (2017) 1557-1566. [13] Y. Shen, X.Y. Zhu, B.L. Chen, Size effects of graphene oxide nanosheets on the construction of three-dimensional graphene-based macrostructures as adsorbents, J. Mater. Chem. A 4 (31) (2016) 12106–12118.10.1039/c6ta04112d [14] J. Zhao, Z.Y. Wang, J.C. White, B.S. Xing, Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol. 48 (17) (2014) 9995–10009.http://dx.doi.org/10.1021/es5022679 [15] L. Chen, G.S. Shi, J. Shen, B.Q. Peng, B.W. Zhang, Y.Z. Wang, F.G. Bian, J.J. Wang, D.Y. Li, Z. Qian, G. Xu, G.P. Liu, J.R. Zeng, L.J. Zhang, Y.Z. Yang, G.Q. Zhou, M.H. Wu, W.Q. Jin, J.Y. Li, H.P. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550 (7676) (2017) 380–383.https://pubmed.ncbi.nlm.nih.gov/28992630/ [16] J.J. Deng, Y. You, H. Bustamante, V. Sahajwalla, R.K. Joshi, Mechanism of water transport in graphene oxide laminates, Chem. Sci. 8 (3) (2017) 1701–1704.https://pubmed.ncbi.nlm.nih.gov/28451296/ [17] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (7) (2012) 3602–3608.https://pubmed.ncbi.nlm.nih.gov/22668008/ [18] T. Lee, B.S. Kim, Two-dimensional designer nanochannels for controllable ion transport in graphene oxide nanomembranes with tunable sheet dimensions, ACS Appl. Mater. Interfaces 12 (11) (2020) 13116–13126.https://pubmed.ncbi.nlm.nih.gov/32088955/ [19] R. Zambare, X.X. Song, S. Bhuvana, J.S. Antony Prince, P. Nemade, Ultrafast dye removal using ionic liquid–graphene oxide sponge, ACS Sustainable Chem. Eng. 5 (7) (2017) 6026–6035.10.1021/acssuschemeng.7b00867 [20] H.B. Huang, Y.L. Ying, X.S. Peng, Graphene oxide nanosheet: An emerging star material for novel separation membranes, J. Mater. Chem. A 2 (34) (2014) 13772–13782.10.1039/c4ta02359e [21] T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong, M.H. Jin, Y.H. Lee, J.D. Nam, Solution-processed graphite membrane from reassembled graphene oxide, Chem. Mater. 24 (3) (2012) 594–599.10.1021/cm2033838 [22] Z.K. Zheng, R. Grünker, X.L. Feng, Synthetic two-dimensional materials: A new paradigm of membranes for ultimate separation, Adv. Mater. 28 (31) (2016) 6529–6545.10.1002/adma.201506237 [23] P.C. Bandara, E.T. Nadres, D.F. Rodrigues, Use of response surface methodology to develop and optimize the composition of a chitosan–polyethyleneimine–graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water, ACS Appl. Mater. Interfaces 11 (19) (2019) 17784–17795.10.1021/acsami.9b03601 [24] X.F. Ou, X.H. Yang, J.Q. Zheng, M.X. Liu, Free-standing graphene oxide–chitin nanocrystal composite membrane for dye adsorption and oil/water separation, ACS Sustainable Chem. Eng. 7 (15) (2019) 13379–13390.10.1021/acssuschemeng.9b02619 [25] M. Musielak, A. Gagor, B. Zawisza, E. Talik, R. Sitko, Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water, ACS Appl. Mater. Interfaces 11 (31) (2019) 28582–28590.https://pubmed.ncbi.nlm.nih.gov/31318194/ [26] S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: A review, Sci. Total. Environ. 800 (2021) 149662.http://dx.doi.org/10.1016/j.scitotenv.2021.149662 [27] Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total. Environ. 792 (2021) 148546.http://dx.doi.org/10.1016/j.scitotenv.2021.148546 [28] L.P. Liang, F.F. Xi, W.S. Tan, X. Meng, B.W. Hu, X.K. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar 3 (3) (2021) 255–281.http://dx.doi.org/10.1007/s42773-021-00101-6 [29] X.Y. Zhou, F.F. Wang, Y.L. Ji, W.T. Chen, J.F. Wei, Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: Two dilemmas affecting oil sorption, Environ. Sci. Technol. 50 (7) (2016) 3860–3865.10.1021/acs.est.5b06007 [30] J. Tian, J.F. Wei, H. Zhang, Z.Y. Kong, Y.W. Zhu, Z. Qin, Graphene oxide-functionalized dual-scale channels architecture for high-throughput removal of organic pollutants from water, Chem. Eng. J. 359 (2019) 852–862.http://dx.doi.org/10.1016/j.cej.2018.12.048 [31] D. Chen, X.Y. Wang, T.X. Liu, X.D. Wang, J. Li, Electrically Conductive Poly(vinyl alcohol) Hybrid Films Containing Graphene and Layered Double Hydroxide Fabricated via Layer-by-Layer Self-Assembly, ACS Appl. Mater. Interfaces 2 (7) (2010) 2005–2011.10.1021/am100307v [32] Q. Zhao, X.Y. Zhu, B.L. Chen, Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water, Chem. Eng. J. 334 (2018) 1119–1127.http://dx.doi.org/10.1016/j.cej.2017.11.053 [33] Q. Liu, J.B. Shi, J.T. Sun, T. Wang, L.X. Zeng, G.B. Jiang, Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction, Angew. Chem. Int. Ed Engl. 50 (26) (2011) 5913–5917.https://pubmed.ncbi.nlm.nih.gov/21567667/ [34] W.S. Hung, C.H. Tsou, M. de Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26 (9) (2014) 2983–2990.10.1021/cm5007873 [35] Y.R. Yu, Y. Shu, L. Ye, In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance, Chem. Eng. J. 336 (2018) 306–314.http://dx.doi.org/10.1016/j.cej.2017.12.038 [36] X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, A high-performance dual-scale porous electrode for vanadium redox flow batteries, J. Power Sources 325 (2016) 329–336.http://dx.doi.org/10.1016/j.jpowsour.2016.06.048 [37] C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance, Adv. Mater. 25 (9) (2013) 1254–1258.https://pubmed.ncbi.nlm.nih.gov/23225168/ [38] M.Y. Kim, K. Lee, M. Choi, Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity, J. Catal. 319 (2014) 232–238.http://dx.doi.org/10.1016/j.jcat.2014.09.001 [39] J.C. Groen, W.D. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn, J. Pérez-Ramírez, Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication, J. Am. Chem. Soc. 129 (2) (2007) 355–360.10.1021/ja065737o [40] P. Peng, D. Stosic, A. Aitblal, A. Vimont, P. Bazin, X.M. Liu, Z.F. Yan, S. Mintova, A. Travert, Unraveling the diffusion properties of zeolite-based multicomponent catalyst by combined gravimetric analysis and IR spectroscopy (AGIR), ACS Catal. 10 (12) (2020) 6822–6830.10.1021/acscatal.0c01021 [41] X.Y. Zhou, J.F. Wei, H. Zhang, K. Liu, H. Wang, Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain, J. Hazard. Mater. 273 (2014) 61–69.http://dx.doi.org/10.1016/j.jhazmat.2014.03.029 [42] A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2 (7) (2010) 581–587.https://pubmed.ncbi.nlm.nih.gov/20571578/ [43] D.W. Boukhvalov, M.I. Katsnelson, Y.W. Son, Origin of anomalous water permeation through graphene oxide membrane, Nano Lett. 13 (8) (2013) 3930–3935.https://pubmed.ncbi.nlm.nih.gov/23859009/ [44] N. Wei, X.S. Peng, Z.P. Xu, Understanding water permeation in graphene oxide membranes, ACS Appl. Mater. Interfaces 6 (8) (2014) 5877–5883.https://pubmed.ncbi.nlm.nih.gov/24669772/ [45] X.T. Liu, H.Y. Zhang, Y.Q. Ma, X.L. Wu, L.X. Meng, Y.L. Guo, G. Yu, Y.Q. Liu, Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water, J. Mater. Chem. A 1 (5) (2013) 1875–1884.10.1039/c2ta00173j [46] F.F. Liu, J. Zhao, S.G. Wang, P. Du, B.S. Xing, Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes, Environ. Sci. Technol. 48 (22) (2014) 13197–13206.https://pubmed.ncbi.nlm.nih.gov/25353977/ [47] H. Tang, Y. Zhao, S.J. Shan, X.N. Yang, D.M. Liu, F.Y. Cui, B.S. Xing, Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory, Environ. Sci. Technol. 52 (14) (2018) 7689–7697.10.1021/acs.est.8b00585 [48] Y.F. Li, H. Li, K. Zhang, K.M. Liew, The theoretical possibility of a graphene sheet spontaneously scrolling round an iron nanowire, Carbon 50 (2) (2012) 566–576.http://dx.doi.org/10.1016/j.carbon.2011.09.015 [49] J.L. Xiao, W.Y. Lv, Z. Xie, Y.Q. Tan, Y.H. Song, Q. Zheng, Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions, J. Mater. Chem. A 4 (31) (2016) 12126–12135.10.1039/c6ta04119a [50] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539.http://dx.doi.org/10.1016/j.chemosphere.2021.130539 [51] Y.L. Zhu, X.Y. He, J.L. Xu, Z. Fu, S.Y. Wu, J. Ni, B.W. Hu, Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance, Chemosphere 262 (2021) 127901.http://dx.doi.org/10.1016/j.chemosphere.2020.127901 [52] L. Shen, Z.H. Jin, W.H. Xu, X. Jiang, Y.X. Shen, Y.P. Wang, Y.H. Lu, Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel, Ind. Eng. Chem. Res. 58 (19) (2019) 7817–7824.10.1021/acs.iecr.9b01950 [53] R.M. Yu, Y.Z. Shi, D.Z. Yang, Y.X. Liu, J. Qu, Z.Z. Yu, Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants, ACS Appl. Mater. Interfaces 9 (26) (2017) 21809–21819. |