[1] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H. Peden, J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials, Chem Soc Rev 44 (20) (2015) 7371-7405 [2] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B:Environ. 202 (2017) 346-354 [3] H.Y. Chen, J.E. Collier, D.X. Liu, L. Mantarosie, D. Durán-Martín, V. Novák, R.R. Rajaram, D. Thompsett, Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control, Catal. Lett. 146 (9) (2016) 1706-1711 [4] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.S. Nam, B.K. Cho, Hydrothermal stability of CuSSZ13 for reducing NOx by NH3, J. Catal. 311 (2014) 447-457 [5] F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300 (2013) 20-29 [6] F. Gao, J.H. Kwak, J. Szanyi, C.H.F. Peden, Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO_x catalysts, Top. Catal. 56 (15-17) (2013) 1441-1459 [7] Y.L. Shan, Y. Sun, J.P. Du, Y. Zhang, X.Y. Shi, Y.B. Yu, W.P. Shan, H. He, Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR, Appl. Catal. B:Environ. 275 (2020) 119105 [8] Y.L. Shan, W.P. Shan, X.Y. Shi, J.P. Du, Y.B. Yu, H. He, A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13, Appl. Catal. B:Environ. 264 (2020) 118511 [9] F. Gao, Y.L. Wang, N.M. Washton, M. Kollár, J. Szanyi, C.H.F. Peden, Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts, ACS Catal. 5 (11) (2015) 6780-6791 [10] J. Song, Y.L. Wang, E.D. Walter, N.M. Washton, D.H. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:Implications from atomic-level understanding of hydrothermal stability, ACS Catal. 7 (12) (2017) 8214-8227 [11] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3, J. Catal. 275 (2) (2010) 187-190 [12] J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites, J. Catal. 287 (2012) 203-209 [13] Y.H. Ma, H.W. Zhao, C.J. Zhang, Y.N. Zhao, H. Chen, Y.D. Li, Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia, Catal. Today 355 (2020) 627-634 [14] Y.L. Shan, J.P. Du, Y.B. Yu, W.P. Shan, X.Y. Shi, H. He, Precise control of post-treatment significantly increases hydrothermal stability of in situ synthesized cu-zeolites for NH3-SCR reaction, Appl. Catal. B:Environ. 266 (2020) 118655 [15] J. Zhang, Y.L. Shan, L. Zhang, J.P. Du, H. He, S.C. Han, C. Lei, S. Wang, W.B. Fan, Z.C. Feng, X.L. Liu, X.J. Meng, F.S. Xiao, Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction, Appl. Catal. B:Environ. 277 (2020) 119193 [16] L. Ma, Y.S. Cheng, G. Cavataio, R.W. McCabe, L.X. Fu, J.H. Li, Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust, Chem. Eng. J. 225 (2013) 323-330 [17] F. Gao, J. Szanyi, On the hydrothermal stability of Cu/SSZ-13 SCR catalysts, Appl. Catal. A:Gen. 560 (2018) 185-194 [18] S. Han, Q. Ye, S.Y. Cheng, T.F. Kang, H.X. Dai, Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR, Catal. Sci. Technol. 7 (3) (2017) 703-717 [19] S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, D.H. Kim, Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction, Catal. Today 184 (1) (2012) 252-261 [20] D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J.Y. Luo, J.H. Li, K. Kamasamudram, W.S. Epling, A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B:Environ. 165 (2015) 438-445 [21] S. Prodinger, M.A. Derewinski, Y.L. Wang, N.M. Washton, E.D. Walter, J. Szanyi, F. Gao, Y. Wang, C.H.F. Peden, Sub-micron Cu/SSZ-13:Synthesis and application as selective catalytic reduction (SCR) catalysts, Appl. Catal. B:Environ. 201 (2017) 461-469 [22] K. Iyoki, Y. Yamaguchi, A. Endo, Y. Yonezawa, T. Umeda, H. Yamada, Y. Yanaba, T. Yoshikawa, K. Ohara, K. Yoshida, Y. Sasaki, T. Okubo, T. Wakihara, Formation of a dense non-crystalline layer on the surface of zeolite Y crystals under high-temperature steaming conditions, Microporous Mesoporous Mater. 268 (2018) 77-83 [23] H.W. Zhao, Y.N. Zhao, Y.H. Ma, X. Yong, M. Wei, H. Chen, C.J. Zhang, Y.D. Li, Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed, J. Catal. 377 (2019) 218-223 [24] D.W. Fickel, R.F. Lobo, Copper coordination In Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD, J. Phys. Chem. C 114 (3) (2010) 1633-1640 [25] L. Wondraczek, G.J. Gao, D. Möncke, T. Selvam, A. Kuhnt, W. Schwieger, D. Palles, E.I. Kamitsos, Thermal collapse of SAPO-34 molecular sieve towards a perfect glass, J. Non-Cryst. Solids 360 (2013) 36-40 [26] G.N. Greaves, F. Meneau, A. Sapelkin, L.M. Colyer, I. ap Gwynn, S. Wade, G. Sankar, The rheology of collapsing zeolites amorphized by temperature and pressure, Nat Mater 2 (9) (2003) 622-629 [27] A.Y. Wang, P. Arora, D. Bernin, A. Kumar, K. Kamasamudram, L. Olsson, Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction, Appl. Catal. B:Environ. 246 (2019) 242-253 [28] A.Y. Wang, K. Lindgren, M.Q. Di, D. Bernin, P.A. Carlsson, M. Thuvander, L. Olsson, Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts, Appl. Catal. B:Environ. 278 (2020) 119315 [29] J. Wang, L. Shao, C. Wang, J.Q. Wang, M.Q. Shen, W. Li, Controllable preparation of various crystal size and nature of intra-crystalline diffusion in Cu/SSZ-13 NH3-SCR catalysts, J. Catal. 367 (2018) 221-228 [30] H.W. Zhao, Y.N. Zhao, M.K. Liu, X.H. Li, Y.H. Ma, X. Yong, H. Chen, Y.D. Li, Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3, Appl. Catal. B:Environ. 252 (2019) 230-239 [31] K. Khivantsev, N.R. Jaegers, L. Kovarik, J.Z. Hu, F. Gao, Y. Wang, J. Szanyi, Palladium/zeolite low temperature passive NOx adsorbers (PNA):Structure-adsorption property relationships for hydrothermally aged PNA materials, Emiss. Control. Sci. Technol. 6 (2) (2020) 126-138 [32] H.W. Zhao, H.S. Li, X.H. Li, M.K. Liu, Y.D. Li, The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3, Catal. Today 297 (2017) 84-91 [33] F. Gao, E.D. Walter, M. Kollar, Y.L. Wang, J. Szanyi, C.H.F. Peden, Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions, J. Catal. 319 (2014) 1-14 [34] X.S. Dong, J.H. Wang, H.W. Zhao, Y.D. Li, The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia, Catal. Today 258 (2015) 28-34 [35] A.Y. Wang, Y. Chen, E.D. Walter, N.M. Washton, D.H. Mei, T. Varga, Y.L. Wang, J. Szanyi, Y. Wang, C.H.F. Peden, F. Gao, Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts, Nat Commun 10 (1) (2019) 1137 [36] T. Yu, M.H. Xu, Y. Huang, J.Q. Wang, J. Wang, L. Lv, G. Qi, W. Li, M.Q. Shen, Insight of platinum poisoning Cu/SAPO-34 during NH3-SCR and its promotion on catalysts regeneration after hydrothermal treatment, Appl. Catal. B:Environ. 204 (2017) 525-536 [37] L.J. Xie, F.D. Liu, L.M. Ren, X.Y. Shi, F.S. Xiao, H. He, Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3, Environ Sci Technol 48 (1) (2014) 566-572 [38] J. Hun Kwak, H.Y. Zhu, J.H. Lee, C.H. Peden, J. Szanyi, Two different cationic positions in Cu-SSZ-13?Chem Commun (Camb) 48 (39) (2012) 4758-4760 [39] C. Paolucci, A.A. Parekh, I. Khurana, J.R. di Iorio, H. Li, J.D. Albarracin Caballero, A.J. Shih, T. Anggara, W.N. Delgass, J.T. Miller, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis in a cage:Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites, J Am Chem Soc 138 (18) (2016) 6028-6048 [40] C. Paolucci, J.R. di Iorio, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis science of NOx selective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34, Adv. Catal. 59 (2016) 1-107 [41] Y. Ma, X.D. Wu, S.Q. Cheng, L. Cao, L.P. Liu, Y.F. Xu, J.B. Liu, R. Ran, Z.C. Si, D. Weng, Relationships between copper speciation and Brønsted acidity evolution over Cu-SSZ-13 during hydrothermal aging, Appl. Catal. A:Gen. 602 (2020) 117650 [42] J.H. Kwak, R. Tonkyn, D. Tran, D.H. Mei, S.J. Cho, L. Kovarik, J.H. Lee, C.H.F. Peden, J. Szanyi, Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation, ACS Catal. 2 (7) (2012) 1432-1440 [43] C. Paolucci, A.A. Verma, S.A. Bates, V.F. Kispersky, J.T. Miller, R. Gounder, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13, Angew Chem Int Ed Engl 53 (44) (2014) 11828-11833 [44] A.A. Verma, S.A. Bates, T. Anggara, C. Paolucci, A.A. Parekh, K. Kamasamudram, A. Yezerets, J.T. Miller, W.N. Delgass, W.F. Schneider, F.H. Ribeiro, NO oxidation:A probe reaction on Cu-SSZ-13, J. Catal. 312 (2014) 179-190 [45] S.A. Bates, A.A. Verma, C. Paolucci, A.A. Parekh, T. Anggara, A. Yezerets, W.F. Schneider, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13, J. Catal. 312 (2014) 87-97 [46] T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles:Particle migration or Ostwald ripening?Acc Chem Res 46 (8) (2013) 1720-1730 [47] A.J. Hill, C.Y. Seo, X.Y. Chen, A. Bhat, G.B. Fisher, A. Lenert, J.W. Schwank, Thermally induced restructuring of Pd@CeO2 and Pd@SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity, ACS Catal. 10 (3) (2020) 1731-1741 [48] L.M. Colyer, G.N. Greaves, A.J. Dent, K.K. Fox, S.W. Carr, R.H. Jones, In situ study of ceramic formation from Co2+ and Zn2+ exchanged zeolite-A using combined XRD/XAFS techniques, Nucl. Instruments Methods Phys. Res. Sect. B:Beam Interactions Mater. Atoms 97 (1-4) (1995) 107-110 [49] L.M. Colyer, G.N. Greaves, S.W. Carr, K.K. Fox, Collapse and recrystallization processes in zinc-exchanged zeolite-A:A combined X-ray diffraction, XAFS, and NMR study, J. Phys. Chem. B 101 (48) (1997) 10105-10114 [50] Thomas, J. L.; Mange, M.; Eyraud, C. Molecular SieVe Zeolites-I; Advances in Chemistry 101; [51] [[51]] W. Schmitz, H. Siegel, R. Schöllner, Thermal decomposition of partially Mg2+-exchanged forms of zeolite A investigated by DTA-and X-ray high temperature methods, Krist. Techn. 16 (3) (1981) 385-389 [52] [[52]] G. Sankar, P.A. Wright, S. Natarajan, J.M. Thomas, G.N. Greaves, A.J. Dent, B.R. Dobson, C.A. Ramsdale, R.H. Jones, Combined QuEXAFS-XRD:A new technique in high-temperature materials chemistry; an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite, J. Phys. Chem. 97 (38) (1993) 9550-9554 [53] [[53]] C. Wang, C. Wang, J. Wang, J.Q. Wang, M.Q. Shen, W. Li, Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction, J Environ Sci (China) 70 (2018) 20-28 [54] [[54]] C. Wang, J. Wang, J.Q. Wang, Z.X. Wang, Z.X. Chen, X.L. Li, M.Q. Shen, W.J. Yan, X. Kang, The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts, Catalysts 8 (12) (2018) 593 [55] [[55]] S.Y. Huang, J. Wang, J.Q. Wang, C. Wang, M.Q. Shen, W. Li, The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts, Appl. Catal. B:Environ. 248 (2019) 430-440 |