[1] M.A. Rodriguez, J. Ancheyta, Detailed description of kinetic and reactor modeling for naphtha catalytic reforming, Fuel 90 (2011) 3492-3508 [2] J. Liu, X. Xiao, Extractive distillation technology and its industrial application, Modem Chemical Industry 6 (2004) 14-17 [3] X. Gao, X. Geng, Application of the chemical-looping concept for azoetrope separation, Engineering 7 (2021) 84-93 [4] S. Sun, L. Lü, A. Yang, S. Wei, W. Shen, Extractive distillation:Advances in conceptual design, solvent selection, and separation strategies, Chinese J. Chem. Eng. 27 (2019) 1247-1256 [5] X. You, T. Ma, T. Qiu, Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation, Ind. Eng. Chem. Res. 58 (2019) 21659-21670 [6] J. Chen, Q. Ye, T. Liu, H. Xia, X. Feng, Design and control of heterogeneous azeotropic distillation for separating 2-methylpyridine/water, Chem. Eng. Technol. 41 (2018) 2024-2033 [7] L. Zhao, X. Lyu, X. Wang, Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation, Comput. Chem. Eng. 100 (2017) 27-37 [8] W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone-ethanol separation, Comput. Chem. Eng. 50 (2013) 1-7 [9] O.A. Deorukhkar, T.B. Rahangdale, Y.S. Mahajan, Entrainer Selection Approach for Distillation Column, International Journal of Chemical Engineering Research 8 (2016) 29-38 [10] H. Li, P. Zhou, J. Zhang, D. Li, X. Li, X. Gao, A theoretical guide for screening ionic liquid extractants applied in the separation of a binary alcohol-ester azeotrope through a DFT method, J. Mol. Liq. 251 (2018) 51-60 [11] O. Felipe, R. Gonzalo, Q. Angelica, R. Julio, P. Jaime, O. Claudia, Q. Esteban, Theoretical prediction of selectivity in solvent extraction of La(III) and Ce(III) from aqueous solutions using β-diketones as extractants and kerosene and two imidazolium-based ionic liquids as diluents via quantum chemistry and COSMO-RS calculations, J. Mol. Liq. 325 (2021) 114655 [12] H. Li, G. Sun, D. Li, L. Xi, P. Zhou, X. Li, J. Zhang, X. Gao, Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid, Green energy environ. 2020 [13] L. Li, L. Guo, Y. Tu, N. Yu, L. Sun, L. Tian, Q. Li, Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation:Design and control, Comput. Chem. Eng. 99 (2017) 117-134 [14] X. You, J. Gu, C. Peng, I. Rodriguez-Donis, H. Liu, Optimal design of extractive distillation for acetic acid dehydration with N-methyl acetamide, Chem. Eng. Process. 120 (2017) 301-316 [15] L. Sun, X. Chang, T. Tan, Application of thermal coupling technology in azeotropic distillation system, Progress in chemical industry 29 (2010) 2228-2233 [16] H. Cao, H. Wang, C. Li, Heat integrated extractive distillation of methyl acetate methanol water, Progress in chemical industry 4 (2017) 148-151 [17] D.M. Van de Bor, C.A.I. Infante Ferreira, Quick selection of industrial heat pump types including the impact of thermodynamic losses, Energy 53 (2013) 312-322 [18] G. Modla, P. Lang, Comparison of Extractive and Pressure-Swing Batch Distillation for Acetone-Methanol Separation, Computer Aided Chemical Engineering 29 (2011) 382-386 [19] A.K. Jana, Heat integrated distillation operation, Appl. Energ. 87 (2010) 1477-1494 [20] T. Shi, W. Chun, A. Yang, S. Jin, W. Shen, J. Ren, J. Gu, The process control of the triple-column pressure-swing extractive distillation with partial heat integration, Sep. Purif. Technol. 1238 (2020) 116416 [21] S. Sun, A. Yang, I. Chien, W. Shen, S. Wei, J. Ren, X. Zhang, Intensifification and performance assessment for synthesis of 2-methoxy-2-methyl-heptane through the combined use of different pressure thermally coupled reactive distillation and heat integration technique, Chem. Eng. Process. 142 (2019) 107561 [22] H. Luo, C.S. Bildea, A.A. Kiss, Novel heat-pump-assisted extractive distillation for bioethanol purification, Ind. Eng. Chem. Res. 54 (2015) 2208-2213 [23] K.A. Kobe, Elements of fractional distillation, J. Chem. Educ. 28 (1951) 231-232 [24] C. Zheng, S. Song, Y. Mu, Research Progress on application forms of heat pump distillation, Modern Chemical Industry 28 (2008) 114-117 [25] P. Shi, Q. Zhang, A. Zeng, Y. Ma, X. Yuan, Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope, Energy 196 (2020) 117095 [26] L. Zhao, X. Lyu, W. Wang, J. Shan, T. Qiu, Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation, Comput. Chem. Eng. 100 (2017) 27-37 [27] M. Li, Y. Cui, X. Shi, Z. Zhang, X. Zhao, X. Zhu, J. Gao, Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures, Chinese J. Chem. Eng. (5) (2021) 203-210 [28] Z. Xing, Y. Gao, H. Ding, X. Wang, L. Li, H. Zhou, Isobaric vapor-liquid equilibrium for ternary system of ethanol, ethyl propionate and para-xylene at 101.3 kPa, Chinese J. Chem. Eng. 26 (2018) 560-565 [29] H. Jia, H. Wang, K. Ma, M. Yu, Z. Zhu, Y. Wang, Effect of thermodynamic parameters on prediction of phase behavior and process design of extractive distillation, Chinese J. Chem. Eng. 26 (2018) 993-1002 [30] H.C. Van Ness, S.M. Byer, R.E. Gibbs, Vapor-Liquid equilibrium:Part I. An appraisal of data reduction methods, Aiche J. 19 (1973) 238-244 [31] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, Aiche J. 14 (1968) 135-144 [32] Y. Liu, Y. Wang, W.F. Cai, Salting Effect of Sodium Hydroxide and Sodium Formate on the Liquid-Liquid Equilibrium of Polyoxymethylene Dimethyl Ethers in Aqueous Solution, J. Chem. Eng. Data. 64 (2019) 2578-2592 [33] X. Li, X. Zhang, L. Meng, S. Zheng, Y. Zeng, Quantum chemistry study on the interaction between serine and water, Journal of Hebei Normal University (Natural Science edition) 34 (2010) 696-701 [34] Y. Shen, Z. Chen, H. Qi, Z. Ma, Y. Dai, Q, Zhao, Z. Zhu, Y. Ma, Y. Wang, Mechanism analysis of extractive distillation for separation of acetic acid and water based on quantum chemical calculation and molecular dynamics simulation, J. Mol. Liq. 332 (2021) 115866 [35] M.J.G. Revision Frisch, G.W. Trucks, H.B. Schlegel, Gaussian, Inc., Wallingford CT, 2004. [36] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, B. Barone Mennucci, Gaussian 09, Inc., Wallingford CT, 2009. [37] H. Zhang, Y. Liu, X. Yu, X. Qiu, Y. Shen, J. Yang, P. Cui, Y. Wang, J. Gao, Application of green solvent to separate the minimum boiling point azeotrope based on molecular structure prediction and experimental verification, Sep. Purif. Technol. 240 (2020) 1383-5866 [38] Y. Xu, D. Meng, H. Li, X. Yu, Z. Zhu, Y. Wang, Y. Ma, J. Gao, Mechanism analysis for separation of cyclohexane and tert-Butanol system via ionic liquids as extractants and process optimization, ACS Sustain Chem. Eng. 7 (2019) 19984-19992 [39] A. Yang, H. Zou, I. Chien, D. Wang, S. Wei, J. Ren, Z. Ren, W. Shen, Optimal Design and Effective Control of Triple-Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multiazeotrope, Ind. Eng. Chem. Res. 58 (2019) 7265-7283 [40] J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York 1988 [41] X. Huang, S. Xia, P. Ma, S. Song, B. Ma, Vapor-Liquid Equilibrium of N-Formylmorpholine with Toluene and Xylene at 101.33 kPa, J. Chem. Eng. Data, 53 (2008) 252-255 [42] Q. Zhang, M. Liu, C. Li, A. Zeng, Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol, J. Taiwan Inst. Chem. E. 93 (2018) 644-659 [43] Q. Zhang, M. Liu, C. Li, A. Zeng, Design and control of extractive distillation process for separation of the minimum-boiling azeotrope ethyl-acetate and ethanol, Chem. Eng. Res. Des. 136 (2018b) 57-70 [44] V. Plesu, A.E.B. Ruiz, J. Bonet, J. Llorens, Simple equation for suitability of heat pump use in distillation, Comput. Aided Chem. Eng. 33 (2014) 1327-1332 |