[1] M. Lakshmikandan, A.G. Murugesan, S. Wang, A.E.F. Abomohra, P.A. Jovita, S. Kiruthiga, Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production, J. Clean. Prod. 247 (2020) 119398 [2] C. Yuan, S. Wang, B. Cao, Y.M. Hu, A.E.F. Abomohra, Q. Wang, L.L. Qian, L. Liu, X.L. Liu, Z.X. He, C.Q. Sun, Y.Q. Feng, B. Zhang, Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production, Energy 173 (2019) 413–422 [3] M. Luo, L.Z. Zhou, J.J. Cai, H.Y. Zhang, C. Wang, Migration of sulfur in in situ gasification chemical looping combustion of Beisu coal with iron- and copper-based oxygen carriers, Chin. J. Chem. Eng. 35 (2021) 247–255 [4] X.L. Zhang, Z.D. Gao, Y.Z. Liu, Y.H. Hou, X.Q. Sun, Q.J. Guo, Experimental and mechanistic study on chemical looping combustion of caking coal, Chin. J. Chem. Eng. 37 (2021) 89–96 [5] O. Ellabban, H. Abu-Rub, F. de Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev. 39 (2014) 748–764 [6] Y.H. Long, Z.H. Gu, S. Lin, K. Yang, X. Zhu, Y.G. Wei, H. Wang, K.Z. Li, NiO and CuO coated monolithic oxygen carriers for chemical looping combustion of methane, J. Energy Inst. 94 (2021) 199–209 [7] C. Wang, M. Luo, L. Zhou, H. Zhang, Sulfur transformation behavior of inorganic sulfur-containing compounds in chemical looping combustion, Energy Fuels 34 (3) (2020) 3969-3975 [8] C.L. Weber, C. Clavin, Life cycle carbon footprint of shale gas: Review of evidence and implications, Environ Sci Technol 46 (11) (2012) 5688–5695 [9] P.V. Roslyakov, R. Attikas, M.N. Zaichenko, K.A. Pleshanov, I.L. Ionkin, Studying the possibility of separate and joint combustion of Estonian shales and oil shale retort gas at thermal power plants, Therm. Eng. 62 (10) (2015) 691–702 [10] Z.W. Miao, E.C. Jiang, Z.F. Hu, Review of agglomeration in biomass chemical looping technology, Fuel 309 (2022) 122199 [11] F.A. Rahman, M.M.A. Aziz, R. Saidur, W.A.W.A. Bakar, M.R. Hainin, R. Putrajaya, N.A. Hassan, Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future, Renew. Sustain. Energy Rev. 71 (2017) 112–126 [12] L. Li, L.B. Duan, Z.H. Yang, S. Tong, E. John Anthony, C.S. Zhao, Experimental study of a single char particle combustion characteristics in a fluidized bed under O2/H2O condition, Chem. Eng. J. 382 (2020) 122942 [13] L. Li, L.B. Duan, Z.H. Yang, C.S. Zhao, Pressurized oxy-fuel combustion characteristics of single coal particle in a visualized fluidized bed combustor, Combust. Flame 211 (2020) 218–228 [14] C. Kunze, H. Spliethoff, Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants, Appl. Energy 94 (2012) 109–116 [15] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2) (2012) 215–282 [16] M. Luo, Y. Yi, C. Wang, K. Liu, J.F. Pan, Q. Wang, Energy and exergy analysis of power generation systems with chemical looping combustion of coal, Chem. Eng. Technol. 41 (4) (2018) 776–787 [17] X.D. Wang, X.J. Wang, Y.L. Shao, B.S. Jin, Coal-fueled separated gasification chemical looping combustion under auto-thermal condition in a two-stage reactor system, Chem. Eng. J. 390 (2020) 124641 [18] B.W. Wang, H.Y. Li, W. Wang, C. Luo, D.F. Mei, Chemical looping combustion of lignite with the CaSO4-CoO mixed oxygen carrier, J. Energy Inst. 93 (3) (2020) 1229–1241 [19] F. Liu, X. Wu, L. Yang, H.F. Bu, X. Zhang, Evaluation of a bauxite cement-bonded Fe-based oxygen carrier during a hundred of cycles under coal-fueled chemical looping combustion conditions, Fuel Process. Technol. 199 (2020) 106267 [20] Z. Huang, A.Q. Zheng, Z.B. Deng, G.Q. Wei, K. Zhao, D.Z. Chen, F. He, Z.L. Zhao, H.B. Li, F.X. Li, In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier, Energy 190 (2020) 116360 [21] Z. Ma, S. Zhang, Y.G. Lu, Phase segregation mechanism of NiFe2O4 oxygen carrier in chemical looping process, Int. J. Energy Res. 45 (2) (2021) 3305–3314 [22] Z. Ma, J.F. Wang, G.F. Liu, H. Zhang, Y.G. Lu, J.H. Xiong, C.Y. Xie, C. Zou, Regeneration of deactivated Fe2O3/Al2O3 oxygen carrier via alkali metal doping in chemical looping combustion, Fuel Process. Technol. 220 (2021) 106902 [23] Z. Ma, S. Zhang, Y.G. Lu, Activation mechanism of Fe2O3-Al2O3 oxygen carrier in chemical looping combustion, Energy Fuels 34 (12) (2020) 16350–16355 [24] S. Lin, Z.H. Gu, X. Zhu, Y.G. Wei, Y.H. Long, K. Yang, F. He, H. Wang, K.Z. Li, Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion, Energy 197 (2020) 117202 [25] X. Zhu, Q. Imtiaz, F. Donat, C. R. Müller, F. Li, Chemical looping beyond combustion-a perspective, Energ. Environ. Sci. 13 (3) (2020) 772-804 [26] Z. Ma, S. Zhang, R. Xiao, J.F. Wang, Inhibited phase segregation to enhance the redox performance of NiFe2O4 via CeO2 modification in the chemical looping process, Energy Fuels 34 (5) (2020) 6178–6185 [27] H.B. Zhao, X. Tian, J.C. Ma, M.Z. Su, B.W. Wang, D.F. Mei, Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology, Int. J. Greenh. Gas Control. 93 (2020) 102898 [28] Z.Q. Wu, B. Zhang, S. Wu, G.M. Li, S.D. Zhao, Y.W. Li, B.L. Yang, Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: Products distribution and kinetic analysis on gaseous products from cellulose, Fuel Process. Technol. 193 (2019) 361–371 [29] M. Durmaz, N. Dilma?, ?.F. Dilma?, Evaluation of performance of copper converter slag as oxygen carrier in chemical-looping combustion (CLC), Energy 196 (2020) 117055 [30] S.W. Fang, Z.B. Deng, Y. Lin, Z. Huang, L.X. Ding, L.S. Deng, H.Y. Huang, Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier, Energy 228 (2021) 120448 [31] Z.B. Deng, Z. Huang, F. He, A.Q. Zheng, G.Q. Wei, J.G. Meng, Z.L. Zhao, H.B. Li, Evaluation of calcined copper slag as an oxygen carrier for chemical looping gasification of sewage sludge, Int. J. Hydrog. Energy 44 (33) (2019) 17823–17834 [32] L. Liu, Z.S. Li, L.J. Wang, Z.H. Zhao, Y. Li, N.S. Cai, MgO–Kaolin-supported manganese ores as oxygen carriers for chemical looping combustion, Ind. Eng. Chem. Res. 59 (15) (2020) 7238–7246 [33] L. Liu, Z.S. Li, W.C. Li, N.S. Cai, The melting characteristics of Vietnamese ilmenite and manganese ores used in chemical looping combustion, Int. J. Greenh. Gas Control. 90 (2019) 102792 [34] T. Mattisson, S. Sundqvist, P. Moldenhauer, H. Leion, A. Lyngfelt, Influence of heat treatment on manganese ores as oxygen carriers, Int. J. Greenh. Gas Control. 87 (2019) 238–245 [35] A. Gyllén, P. Knutsson, F. Lind, H. Thunman, Magnetic separation of ilmenite used as oxygen carrier during combustion of biomass and the effect of ash layer buildup on its activity and mechanical strength, Fuel 269 (2020) 117470 [36] J.M. Fan, H. Hong, H.G. Jin, Life cycle global warming impact of CO2 capture by in situ gasification chemical looping combustion using ilmenite oxygen carriers, J. Clean. Prod. 234 (2019) 568–578 [37] G. Li, X. Lv, C.Y. Ding, X.G. Zhou, D.P. Zhong, G.B. Qiu, Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications, Appl. Energy 262 (2020) 114604 [38] S.W. Zhang, H.M. Gu, J. Zhao, L.H. Shen, L.L. Wang, Development of iron ore oxygen carrier modified with biomass ash for chemical looping combustion, Energy 186 (2019) 115893 [39] Y.E. Zheng, Y.G. Wei, K.Z. Li, X. Zhu, H. Wang, Y.H. Wang, Chemical-looping steam methane reforming over macroporous CeO2-ZrO2 solid solution: Effect of calcination temperature, Int. J. Hydrog. Energy 39 (25) (2014) 13361–13368 [40] J. Adánez, A. Cuadrat, A. Abad, P. Gayán, L.F. de Diego, F. García-Labiano, Ilmenite activation during consecutive redox cycles in chemical-looping combustion, Energy Fuels 24 (2) (2010) 1402–1413 [41] T.A. Brown, F. Scala, S.A. Scott, J.S. Dennis, P. Salatino, The attrition behaviour of oxygen-carriers under inert and reacting conditions, Chem. Eng. Sci. 71 (2012) 449–467 [42] L.B. Duan, Z.J. Yu, M. Erans, Y.J. Li, V. Manovic, E.J. Anthony, Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture, Ind. Eng. Chem. Res. 55 (35) (2016) 9476–9484 [43] W. Zhang, Y.J. Li, L.B. Duan, X.T. Ma, Z.Y. Wang, C.M. Lu, Attrition behavior of calcium-based waste during CO2 capture cycles using calcium looping in a fluidized bed reactor, Chem. Eng. Res. Des. 109 (2016) 806–815 [44] J.J. Cai, S.Z. Wang, Z.Z. Xiao, A study on the CO2 capture and attrition performance of construction and demolition waste, Fuel 222 (2018) 232–242 [45] Z. Ma, S. Zhang, R. Xiao, Redox performance of pyrite cinder in methane chemical looping combustion, Chem. Eng. J. 395 (2020) 125097 [46] S. Zhang, R. Xiao, Comparison of pyrite cinder with synthetic and natural iron-based oxygen carriers in coal-fueled chemical-looping combustion, Greenh. Gases: Sci. Technol. 8 (1) (2018) 106–119 [47] Z. Ma, G.F. Liu, H. Zhang, S. Zhang, Y.G. Lu, Evaluation of pyrite cinders from sulfuric acid production as oxygen carrier for chemical looping combustion, Energy 233 (2021) 121079 [48] Z.C. Di, F.L. Yang, Y. Cao, K. Zhang, Y.X. Guo, S.L. Gao, F.Q. Cheng, The transformation pathways on the catalytic and stability-promoted CaSO4 reduction in CLC process using Fe2O3 supported, Fuel 253 (2019) 327–338 [49] S. Zhang, R. Xiao, J. Liu, S. Bhattacharya, Performance of Fe2O3/CaSO4 composite oxygen carrier on inhibition of sulfur release in calcium-based chemical looping combustion, Int. J. Greenh. Gas Control. 17 (2013) 1–12 [50] Z.W. Miao, Z.F. Hu, E.C. Jiang, X.Q. Ma, Hydrogen-rich syngas production by chemical looping reforming on crude wood vinegar using Ni-modified HY zeolite oxygen carrier, Fuel 279 (2020) 118547 [51] D. Karami, N. Mahinpey, Utilization of alumina aerogel as high surface area support for the fabrication of oxygen carriers in the chemical looping combustion process, Energy Fuels 33 (6) (2019) 5408–5414 [52] W.C. Cho, C.G. Kim, S.U. Jeong, C.S. Park, K.S. Kang, D.Y. Lee, S.D. Kim, Activation and reactivity of iron oxides as oxygen carriers for hydrogen production by chemical looping, Ind. Eng. Chem. Res. 54 (12) (2015) 3091–3100 [53] F. Scala, P. Salatino, Limestone fragmentation and attrition during fluidized bed oxyfiring, Fuel 89 (4) (2010) 827–832 [54] Z. Ma, R. Xiao, L.Y. Chen, Redox reaction induced morphology and microstructure evolution of iron oxide in chemical looping process, Energy Convers. Manag. 168 (2018) 288–295 |