[1] F.M. Menger, C.A. Littau, Gemini-surfactants:synthesis and properties, J. Am. Chem. Soc. 113 (4) (1991) 1451-1452 [2] Menger, Keiper, Gemini surfactants, Angewandte Chemie Int. Ed Engl. 39 (11) (2000) 1906-1920 [3] X.H. Mao, R. Jiang, W. Xiao, J.G. Yu, Use of surfactants for the remediation of contaminated soils:a review, J. Hazard. Mater. 285 (2015) 419-435 [4] S. He, B. Xu, Y. Zhang. Krafft temperature, critical micelle concentration, and rheology of "Pseudo-Gemini" surfactant comprising fatty acid soap and Bola-Type quaternary ammonium salt, Journal of Surfactants and Detergents, 22 (6) (2019) 1269-1277 [5] C. Acheampong, L. Zhang, C. Agbo, D. Liang, C. Du, S. Fu, Synthesis and characterization of A-B-A-Type nonionic dimeric dispersants for pigment dispersion, Journal of Surfactants and Detergents, 22 (4) (2019) 885-895 [6] N. Pal, N. Kumar, A. Verma, K. Ojha, A. Mandal, Performance evaluation of novel sunflower oil-based gemini surfactant(s) with different spacer lengths:application in enhanced oil recovery, Energy Fuels 32 (11) (2018) 11344-11361 [7] N. Pal, N. Saxena, A. Mandal. Characterization of alkali-surfactant-polymer slugs using synthesized gemini surfactant for potential application in enhanced oil recovery, Journal of Petroleum Science and Engineering, 168 (2018)283-300 [8] Y.R. Fan, Y.J. Li, M.W. Cao, J.B. Wang, Y.L. Wang, R.K. Thomas, Micellization of dissymmetric cationic gemini surfactants and their interaction with dimyristoylphosphatidylcholine vesicles, Langmuir 23 (23) (2007) 11458-11464 [9] E. Khurana, S. O. Nielsen, M. L. Klein, Gemini surfactants at the air/water interface:a fully atomistic molecular dynamics study, The Journal of Physical Chemistry B, 2006, 110 (44), 22136-22142 [10] P. Wang, S. Pei, M.H. Wang, Y.G. Yan, X.L. Sun, J. Zhang, Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants:the effect of spacer length, Phys. Chem. Chem. Phys. 19 (6) (2017) 4462-4468 [11] Q.Z. Chen, W.X. Liu, H.J. Liu, X.R. Huang, Y.Z. Shang, H.L. Liu, Molecular dynamics simulations and density functional theory on unraveling photoresponsive behavior of wormlike micelles constructed by 12-2-12·2Br-and trans- ortho-methoxy cinnamate, Langmuir 36 (32) (2020) 9499-9509 [12] Y. Tu, Q.Z. Chen, Y.Z. Shang, H.N. Teng, H.L. Liu, Photoresponsive behavior of wormlike micelles constructed by gemini surfactant 12-3-12·2Br-and different cinnamate derivatives, Langmuir 35 (13) (2019) 4634-4645 [13] J.J. Feng, Z.H. Yan, J.M. Song, J.C. He, G. Zhao, H.M. Fan, Study on the structure-activity relationship between the molecular structure of sulfate gemini surfactant and surface activity, thermodynamic properties and foam properties, Chem. Eng. Sci. 245 (2021) 116857 [14] A.A. Muslim, D. Ayyash, S.S. Gujral, G.M. Mekhail, P.P.N. Rao, S.D. Wettig, Synthesis and characterization of asymmetrical gemini surfactants, Phys. Chem. Chem. Phys. 19 (3) (2017) 1953-1962 [15] A. Muslim, Synthesis and characterization of dissymmetric gemini surfactants for gene delivery application, UWSpace, 2016 [16] D.P. Malenov, G.V. Janjić, V.B. Medaković, M.B. Hall, S.D. Zarić, Noncovalent bonding:Stacking interactions of chelate rings of transition metal complexes, Coord. Chem. Rev. 345 (2017) 318-341 [17] D. Pramanik, P. K. Maiti, DNA-assisted dispersion of carbon nanotubes and comparison with other dispersing agents, ACS Applied Materials & Interfaces, 9 (40) (2017) 35287-35296 [18] X.Y. Song, H. Guo, J.B. Tao, S.L. Zhao, X. Han, H.L. Liu, Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants, Chem. Eng. Sci. 187 (2018) 406-414 [19] Z. Xu, X.L. Lei, Y.S. Tu, Z.J. Tan, B. Song, H.P. Fang, Dynamic cooperation of hydrogen binding and π stacking in ssDNA adsorption on graphene oxide, Chemistry 23 (53) (2017) 13100-13104 [20] Q.W. Gao, Y.M. Zhang, S.T. Xu, A. Laaksonen, Y.D. Zhu, X.Y. Ji, X.H. Lu, Physicochemical properties and structure of fluid at nano-/micro-interface:Progress in simulation and experimental study, Green Energy Environ. 5 (3) (2020) 274-285 [21] H. Jia, P. Lian, H. Yan, Y.G. Han, Q.X. Wang, J.J. Dai, S.Y. Wang, Z.H. Tian, D.F. Wang, Insights into the assembly of the pseudogemini surfactant at the oil/water interface:a molecular simulation study, Langmuir 36 (7) (2020) 1839-1847 [22] J.L. Ma, X.Y. Song, B.L. Peng, T. Zhao, J.H. Luo, R.F. Shi, S.L. Zhao, H.L. Liu, Multiscale molecular dynamics simulation study of polyoxyethylated alcohols self-assembly in emulsion systems, Chem. Eng. Sci. 231 (2021) 116252 [23] I. V. Kopanichuk, E. A. Vedenchuk, A. S. Koneva, A. A. Vanin. Structural properties of Span 80/Tween 80 reverse micelles by molecular dynamics simulations. The Journal of Physical Chemistry B, 122 (33) (2018) 8047-8055 [24] S. Schöttl, D. Horinek, Salt effects in surfactant-free microemulsions, The Journal of Chemical Physics, 148 (22) (2018) 222818 [25] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS:High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1-2 (2015) 19-25 [26] C. Oostenbrink, A. Villa, A. E. Mark, W. F. van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computational Chemistry, 25 (13) (2004) 1656-1676 [27] N. Schmid, A.P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A.E. Mark, W.F. van Gunsteren, Definition and testing of the GROMOS force-field versions 54A7 and 54B7, Eur. Biophys. J. 40 (7) (2011) 843-856 [28] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials. The Journal of Physical Chemistry, 91 (24) (1987) 6269-6271 [29] M. Stroet, B. Caron, K. M. Visscher, D. P. Geerke, A. K. Malde, A. E. Mark, Automated Topology Builder Version 3.0:prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14 (11) (2018)5834-5845 [30] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, PACKMOL:A package for building initial configurations for molecular dynamics simulations, Journal of Computational Chemistry, 30 (13) (2009) 2157-2164 [31] J. M. Martínez, L. Martínez, Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking,Journal of Computational Chemistry, 24 (7) (2003) 819-825 [32] B. Gautam, Energy minimization. In:Homology Molecular Modeling-Perspectives and Applications. IntechOpen, 2021: [33] V. R. Vasquez, B. C. Williams, O. A. Graeve, Stability and comparative analysis of AOT/water/isooctane reverse micelle system using dynamic light scattering and molecular dynamics, The Journal of Physical Chemistry B, 115 (12) (2011) 2979-2987 [34] W.H. Li, Z.H. Jin, Effect of ion concentration and multivalence on methane-brine interfacial tension and phenomena from molecular perspectives, Fuel 254 (2019) 115657 [35] A. Obeidat, A. Jaradat, B. Hamdan, H. Abu-Ghazleh, Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids:Methanol as an example, Physica A:Statistical Mechanics and its Applications, 496(2018) 243-248 [36] R. M. Venable, H. I. Ingólfsson, M. G. Lerner, B. S. Perrin, B. A. Camley, S. J. Marrink, F. L. H. Brown, R. W. Pastor, Lipid and peptide diffusion in bilayers:the Saffman-Delbrück model and periodic boundary conditions, The Journal of Physical Chemistry B, 121 (15) (2017) 3443-3457 [37] J.B. Tao, X.Y. Song, T. Zhao, S.L. Zhao, H.L. Liu, Confinement effect on water transport in CNT membranes, Chem. Eng. Sci. 192 (2018) 1252-1259 [38] G. Bussi, D. Donadio, M. Parrinello. Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126 (1) (2007) 014101 [39] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81 (8) (1984)3684-3690 [40] R. Gupta, Rai B. Molecular dynamics simulation study of skin lipids:effects of the molar ratio of individual components over a wide temperature range. The Journal of Physical Chemistry B, 119 (35) (2015) 11643-11655 [41] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS:A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18 (12) (1997) 1463-1472 [42] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen. A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103 (19) (1995) 8577-8593 [43] J.B. Tao, X.Y. Song, B. Bao, S.L. Zhao, H.L. Liu, The role of surface wettability on water transport through membranes, Chem. Eng. Sci. 219 (2020) 115602 [44] W. Humphrey, A. Dalke, K., VMD:Visual molecular dynamics. Journal of Molecular Graphics, 14 (1) (1996) 33-38 [45] Y. Mikami, Y.F. Liang, T. Matsuoka, E.S. Boek, Molecular dynamics simulations of asphaltenes at the oil-water interface:from nanoaggregation to thin-film formation, Energy Fuels 27 (4) (2013) 1838-1845 [46] J. G. Kirkwood, F. P. Buff, The Statistical Mechanical Theory of Surface Tension. The Journal of Chemical Physics, 17 (3) (1949) 338-343 [47] R.J.K.U. Ranatunga, C.T. Nguyen, B.A. Wilson, W. Shinoda, S.O. Nielsen, Molecular dynamics study of nanoparticles and non-ionic surfactant at an oil-water interface, Soft Matter 7 (15) (2011) 6942 [48] E. Alami, G. Beinert, P. Marie, R. Zana, Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface, Langmuir 9 (1993) 1465-1467 [49] A. Goebel, K. Lunkenheimer, Interfacial tension of the water/n-alkane interface, Langmuir 13 (2) (1997) 369-372 [50] H.Y. Xiao, Z. Zhen, H.Q. Sun, X.L. Cao, Z.Q. Li, X.W. Song, X.H. Cui, X.H. Liu, Molecular dynamics study of the water/n-alkane interface, Sci. China Chem. 53 (4) (2010) 945-949 [51] S. Zeppieri, J. Rodríguez, A. L. de Ramos López, Interfacial tension of alkane + water systems. Journal of Chemical & Engineering Data, 46 (5) (2001) 1086-1088 [52] R. B. Teklebrhan, L. Ge, S. Bhattacharjee, Z. Xu, J. Sjöblom, Initial partition and aggregation of uncharged polyaromatic molecules at the oil-water interface:a molecular dynamics simulation Study. The Journal of Physical Chemistry B, 118 (4) (2014) 1040-1051 [53] Water-Density, Specific Weight and Thermal Expansion Coefficient. https://www.engineeringtoolbox.com/. [54] F. Yang, Y. Guo, Y. Xing, D. Li, W. Fang, R. Lin, Densities and viscosities of binary mixtures of JP-10 with n-octane or n-decane at several temperatures. Journal of Chemical & Engineering Data, 53 (9) (2008) 2237-2240 [55] M. Luo, L. L. Dai, Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces. Journal of Physics:Condensed Matter, 19 (37) (2007) 375109 [56] S. S. Jang, S.-T. Lin, P. K. Maiti, M. Blanco, W. A. Goddard, P. Shuler, Y. Tang, Molecular dynamics study of a surfactant-mediated decane-water interface:effect of molecular architecture of alkyl benzene sulfonate. The Journal of Physical Chemistry B, 108 (32) (2004) 12130-12140 [57] J.S.J. Tan, L.P. Zhang, F.C.H. Lim, D.W. Cheong, Interfacial properties and monolayer collapse of alkyl benzenesulfonate surfactant monolayers at the decane-water interface from molecular dynamics simulations, Langmuir 33 (18) (2017) 4461-4476 [58] J.L. Ma, X.Y. Song, J.H. Luo, T. Zhao, H.P. Yu, B.L. Peng, S.L. Zhao, Molecular dynamics simulation insight into interfacial stability and fluidity properties of microemulsions, Langmuir 35 (42) (2019) 13636-13645 [59] S. Sharma, I. Ali, B. Bezbaruah, Quantum mechanical study on the effect of pi-pi stacking interactions on phenolic systems and their compatibility with some polar solvents. Journal of Chemistry and Chemical Sciences, 7 (12) (2017) 1311-1330 [60] R. Eppenga, D. Frenkel, Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets, Mol. Phys. 52 (6) (1984) 1303-1334 [61] Y. Li, Y. Guo, M. Bao, X. Gao. Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations. Journal of Colloid and Interface Science, 361 (2) (2011) 573-580 [62] B. Coasne, C. Alba-Simionesco, F. Audonnet, G. Dosseh, K.E. Gubbins, Molecular simulation of the adsorption and structure of benzene confined in mesoporous silicas, Adsorption 13 (5-6) (2007) 485-490 [63] V.K. Sharma, S. Mitra, R. Mukhopadhyay, Dynamic landscape in self-assembled surfactant aggregates, Langmuir 35 (44) (2019) 14151-14172 [64] R.A. Khalil, A.H.A. Zarari, Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates, Appl. Surf. Sci. 318 (2014) 85-89 [65] J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics, 72 (1976)1525-1568 [66] R. Nagarajan, Molecular packing parameter and surfactant self-assembly:the neglected role of the surfactant tail, Langmuir 18 (1) (2002) 31-38 [67] R. B. Teklebrhan, L. Ge, S. Bhattacharjee, Z. Xu, J. Sjöblom, probing structure-nanoaggregation relations of polyaromatic surfactants:a molecular dynamics simulation and dynamic light scattering study. The Journal of Physical Chemistry B, 116 (20) (2012)5907-5918 [68] S. Gartenhaus, C. Schwartz, Center-of-mass motion in many-particle systems, Phys. Rev. 108 (2) (1957) 482-490 [69] Z. Xie, T. Su, E. Ubba, H. Deng, Z. Mao, T. Yu, T. Zheng, Y. Zhang, S. Liu, Z. Chi, Achieving tunable dual-emissive and high-contrast mechanochromic materials by manipulating steric hindrance effects. Journal of Materials Chemistry C, 7 (11) (2019) 3300-3305 |