[1] T. Yang, F. Liu, H.F. Xiong, Q.Y. Yang, F.S. Chen, C.C. Zhan, Fouling process and anti-fouling mechanisms of dynamic membrane assisted by photocatalytic oxidation under sub-critical fluxes, Chin. J. Chem. Eng. 27 (8) (2019) 1798–1806.10.1016/j.cjche.2018.10.019 [2] Y.J. Shao, Z. Zhou, J. Jiang, L.M. Jiang, J.P. Huang, Y. Zuo, Y.Q. Ren, X.D. Zhao, Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights, J. Membr. Sci. 637 (2021) 119657.10.1016/j.memsci.2021.119657 [3] R.K. Dereli, X.F. Wang, F.P. van der Zee, J.B. van Lier, Biological performance and sludge filterability of anaerobic membrane bioreactors under nitrogen limited and supplied conditions, Water Res. 137 (2018) 164–172.10.1016/j.watres.2018.03.015 [4] R.H. Peiris, H. Budman, C. Moresoli, R.L. Legge, Fouling control and optimization of a drinking water membrane filtration process with real-time model parameter adaptation using fluorescence and permeate flux measurements, J. Process. Control 23 (1) (2013) 70–77.10.1016/j.jprocont.2012.10.001 [5] K. Kimura, K. Shikato, Y. Oki, K. Kume, S.A. Huber, Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes, J. Membr. Sci. 554 (2018) 83–89.10.1016/j.memsci.2018.02.024 [6] K.L. Zeng, J. Zhou, Z.L. Cui, Y. Zhou, C. Shi, X.Z. Wang, L.Y. Zhou, X.B. Ding, Z.H. Wang, E. Drioli, Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions, Chin. J. Chem. Eng. 26 (2) (2018) 268–277.10.1016/j.cjche.2017.04.008 [7] Q. Liu, J.Y. Ren, Y.S. Lu, X.L. Zhang, F.A. Roddick, L.H. Fan, Y.F. Wang, H.R. Yu, P. Yao, A review of the current in situ fouling control strategies in MBR: Biological versus physicochemical, J. Ind. Eng. Chem. 98 (2021) 42–59.10.1016/j.jiec.2021.03.042 [8] W.W. Cao, Q.M. Yang, Online sequential extreme learning machine based adaptive control for wastewater treatment plant, Neurocomputing 408 (2020) 169–175.10.1016/j.neucom.2019.05.109 [9] M.B. Asif, B. Ren, C. Li, K. He, X. Zhang, Z. Zhang, Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane fouling mitigation, J. Membr. Sci, 633 (2021) 1–11. [10] J. Xu, C.D. Li, X. He, T.W. Huang, Recurrent neural network for solving model predictive control problem in application of four-tank benchmark, Neurocomputing 190 (2016) 172–178.10.1016/j.neucom.2016.01.020 [11] Y.F. Xie, J.J. Yu, S.W. Xie, T.W. Huang, W.H. Gui, On-line prediction of ferrous ion concentration in goethite process based on self-adjusting structure RBF neural network, Neural Netw. 116 (2019) 1–10.https://pubmed.ncbi.nlm.nih.gov/30986722/ [12] M.C.S. Gomes, W.M. Moreira, S.M. Paschoal, C.C. Sipoli, R.M. Suzuki, J.G. Sgorlon, N.C. Pereira, Modeling of fouling mechanisms in the biodiesel purification using ceramic membranes, Sep. Purif. Technol. 269 (2021) 118595.10.1016/j.seppur.2021.118595 [13] M.F. Wu, Y.F. Chen, H.J. Lin, L.H. Zhao, L.G. Shen, R.J. Li, Y.C. Xu, H.C. Hong, Y.M. He, Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights, Water Res. 181 (2020) 115932.10.1016/j.watres.2020.115932 [14] M.M. Amin, E. Taheri, A. Fatehizadeh, M. Rezakazemi, T.M. Aminabhavi, Anaerobic membrane bioreactor for the production of bioH2: Electron flow, fouling modeling and kinetic study, Chem. Eng. J. 426 (2021) 130716.10.1016/j.cej.2021.130716 [15] K. Kimura, K. Kume, Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant, J. Membr. Sci. 602 (2020) 117975.10.1016/j.memsci.2020.117975 [16] M. Dalmau, N. Atanasova, S. Gabarrón, I. Rodriguez-Roda, J. Comas, Comparison of a deterministic and a data driven model to describe MBR fouling, Chem. Eng. J. 260 (2015) 300–308.10.1016/j.cej.2014.09.003 [17] N. Philippe, A.E. Stricker, Y. Racault, A. Husson, M. Sperandio, P. Vanrolleghem, Modelling the long-term evolution of permeability in a full-scale MBR: Statistical approaches, Desalination 325 (2013) 7–15.10.1016/j.desal.2013.04.027 [18] G. Hu, X.S. Liu, Z. Wang, X.P. Du, X. Wang, Comparison of fouling behaviors between activated sludge suspension in MBR and EPS model solutions: A new combined model, J. Membr. Sci. 621 (2021) 119020.10.1016/j.memsci.2020.119020 [19] S.G. Zhu, H.G. Han, M. Guo, J.F. Qiao, A data-derived soft-sensor method for monitoring effluent total phosphorus, Chin. J. Chem. Eng. 25 (12) (2017) 1791–1797.10.1016/j.cjche.2017.06.008 [20] A.V. Santos, A.R.A. Lin, M.C.S. Amaral, S.M.A.C. Oliveira, Improving control of membrane fouling on membrane bioreactors: A data-driven approach, Chem. Eng. J. 426 (2021) 131291.10.1016/j.cej.2021.131291 [21] X.L. Wu, H.G. Han, J.F. Qiao, Data-driven intelligent warning method for membrane fouling, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2021) 3318–3329.https://pubmed.ncbi.nlm.nih.gov/33417565/ [22] H.G. Han, X.L. Wu, L.M. Ge, J.F. Qiao, A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method, Chin. J. Chem. Eng. 26 (5) (2018) 1071–1077.10.1016/j.cjche.2017.08.007 [23] Y.H. Cai, X. Li, A.A. Zaidi, Y. Shi, K. Zhang, R.Z. Feng, A.Q. Lin, C. Liu, Effect of hydraulic retention time on pollutants removal from real ship sewage treatment via a pilot-scale air-lift multilevel circulation membrane bioreactor, Chemosphere 236 (2019) 124338.10.1016/j.chemosphere.2019.07.069 [24] J.F. Qiao, W. Li, H.G. Han, Soft computing of biochemical oxygen demand using an improved T-S fuzzy neural network, Chin. J. Chem. Eng. 22 (11–12) (2014) 1254–1259.10.1016/j.cjche.2014.09.023 [25] M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network based correlation for estimating water permeability constant in RO desalination process under fouling, Desalination 345 (2014) 101–111.10.1016/j.desal.2014.04.016 [26] F. Schmitt, R. Banu, I.T. Yeom, K.U. Do, Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater, Biochem. Eng. J. 133 (2018) 47–58.10.1016/j.bej.2018.02.001 [27] A. Hosseinzadeh, J.L. Zhou, A. Altaee, M. Baziar, X.W. Li, Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network, Bioresour. Technol. 310 (2020) 123391.10.1016/j.biortech.2020.123391 [28] A. Giwa, S. Daer, I. Ahmed, P.R. Marpu, S.W. Hasan, Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment, J. Water Process. Eng. 11 (2016) 88–97.10.1016/j.jwpe.2016.03.011 [29] W.Y. Lin, L. Jing, Z.W. Zhu, Q.H. Cai, B.Y. Zhang, Removal of heavy metals from mining wastewater by micellar-enhanced ultrafiltration (MEUF): Experimental investigation and Monte Carlo-based artificial neural network modeling, Water Air Soil Pollut. 228 (6) (2017) 1–11.10.1007/s11270-017-3386-5 [30] H.G. Han, S.G. Zhu, J.F. Qiao, M. Guo, Data-driven intelligent monitoring system for key variables in wastewater treatment process, Chin. J. Chem. Eng. 26 (10) (2018) 2093–2101.10.1016/j.cjche.2018.03.027 [31] K. Nam, S. Heo, G. Rhee, M. Kim, C. Yoo, Dual-objective optimization for energy-saving and fouling mitigation in MBR plants using AI-based influent prediction and an integrated biological-physical model, J. Membr. Sci. 626 (2021) 119208.10.1016/j.memsci.2021.119208 [32] H. Hazrati, A.H. Moghaddam, M. Rostamizadeh, The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling, J. Environ. Chem. Eng. 5 (3) (2017) 3005–3013.10.1016/j.jece.2017.05.050 [33] N.D. Viet, A. Jang, Development of artificial intelligence-based models for the prediction of filtration performance and membrane fouling in an osmotic membrane bioreactor, J. Environ. Chem. Eng. 9 (4) (2021) 105337.10.1016/j.jece.2021.105337 [34] A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater. 192 (2) (2011) 568–575.10.1016/j.jhazmat.2011.05.052 [35] S.A. Mirbagheri, M. Bagheri, Z. Bagheri, A.M. Kamarkhani, Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm, Process. Saf. Environ. Prot. 96 (2015) 111–124.10.1016/j.psep.2015.03.015 [36] J.W. Liu, X.Y. Kang, X.R. Luan, L.T. Gao, H.Y. Tian, X.L. Liu, Performance and membrane fouling behaviors analysis with SVR-LibSVM model in a submerged anaerobic membrane bioreactor treating low-strength domestic sewage, Environ. Technol. Innov. 19 (2020) 100844.10.1016/j.eti.2020.100844 [37] R.Y. Cao, J.J. Zhou, W.W. Chen, Insights into membrane fouling implicated by physical adsorption of soluble microbial products onto D3520 resin, Chin. J. Chem. Eng. 28 (2) (2020) 429–439.10.1016/j.cjche.2019.06.005 [38] S.Z. Hao, X.H. Zhao, H.W. Zhang, Y. Wu, C. Fang, X.J. Wang, Effects of a novel bimetallic catalytic biofilter-based pretreatment technique on the form of ultrafiltration membrane fouling, Chin. J. Chem. Eng. 28 (10) (2020) 2513–2522.10.1016/j.cjche.2020.03.015 [39] Y. Suo, Y.S. Ren, Research on the mechanism of nanofiltration membrane fouling in zero discharge process of high salty wastewater from coal chemical industry, Chem. Eng. Sci. 245 (2021) 116810.10.1016/j.ces.2021.116810 [40] M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review, Process. Saf. Environ. Prot. 123 (2019) 229–252.10.1016/j.psep.2019.01.013 [41] C.H. Wang, A.S. Wei, H. Wu, F.S. Qu, W.X. Chen, H. Liang, G.B. Li, Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane, Chin. J. Chem. Eng. 24 (5) (2016) 651–657.10.1016/j.cjche.2016.01.002 [42] W.J. Ding, M. Chen, M. Zhou, Z.X. Zhong, Z.L. Cui, W.H. Xing, Fouling behavior of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane by polyvinyl alcohol (PVA) and chemical cleaning method, Chin. J. Chem. Eng. 28 (12) (2020) 3018–3026.10.1016/j.cjche.2020.05.032 [43] F. A, W. de Wilde, M. Gaertner, M. Weemaes, G. de Gueldre, B.V. de Steene, Elaborating the membrane life concept in a full scale hollow-fibers MBR, J. Membr. Sci. 421-422 (2012) 349–354.10.1016/j.memsci.2012.08.001 [44] C. Niewersch, C. Rieth, L. Hailemariam, G.G. Oriol, J. Warczok, Reverse osmosis membrane element integrity evaluation using imperfection model, Desalination 476 (2020) 114175.10.1016/j.desal.2019.114175 [45] B. Zhao, H. Chen, D.K. Gao, L.Z. Xu, Y.Y. Zhang, Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm, Appl. Soft Comput. 91 (2020) 106211.10.1016/j.asoc.2020.106211 [46] H.G. Han, S. Zhang, J.F. Qiao, X.S. Wang, An intelligent detecting system for permeability prediction of MBR, Water Sci. Technol. 77 (1–2) (2018) 467–478.https://pubmed.ncbi.nlm.nih.gov/29377831/ [47] H. Guo, Y. Wyart, J. Perot, F. Nauleau, P. Moulin, Low-pressure membrane integrity tests for drinking water treatment: A review, Water Res 44 (1) (2010) 41–57.https://pubmed.ncbi.nlm.nih.gov/19836818/ [48] P. Cote, Z. Alam, J. Penny, Hollow fiber membrane life in membrane bioreactors (MBR), Desalination 288 (2012) 145–151.10.1016/j.desal.2011.12.026 [49] D.F. Ayala, V. Ferre, S.J. Judd, Membrane life estimation in full-scale immersed membrane bioreactors, J. Membr. Sci. 378 (1–2) (2011) 95–100. |