[1] J. Verduyckt, D.E. de Vos, Controlled defunctionalisation of biobased organic acids, Chem. Commun. (Camb) 53 (42) (2017) 5682–5693. https://pubmed.ncbi.nlm.nih.gov/28367544/ [2] C.Y. Zhou, X.M Cui, M.H. Li, J.W. Guan, Analysis of market of methyl methacrylate market, Chem. Ind. 38 (04) (2020) 80-86. [3] Y.N. Xu, Production and application of methyl methacrylate, Refin. Chem. Ind. 25 (5) (2014) 1-2. [4] K. Nagai, New developments in the production of methyl methacrylate, Appl. Catal. A Gen. 221 (1–2) (2001) 367–377. http://dx.doi.org/10.1016/S0926-860X(01)00810-9 [5] Y.H. Hu, G.C. Jiang, G.Q. Xu, X.D. Mu, Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst, Mol. Catal. 445 (2018) 316–326. http://dx.doi.org/10.1016/j.mcat.2017.12.009 [6] M.J. Darabi Mahboub, J.L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47 (20) (2018) 7703–7738. https://doi.org/10.1039/c8cs00117k [7] P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (4) (2012) 1538–1558. https://pubmed.ncbi.nlm.nih.gov/21909591/ [8] R. Pirri, J.L. Dubois, Impact Additives, United States Pat., 20120046416 (2012). [9] J.L. Dubois, Method for Manufacturing a Biomass-Derived Methyl Methacrylate, United States Pat., 20110287991 (2011). [10] J.L. Dubois, J.F. Crolzy, L. Campora, C. Croizy, P. Croizy, Biomass-derived Methyl Methacrylate and Corresponding Manufacturing Method, Uses and Polymers, United States Pat., 20110318515 (2011). [11] J.L. Dubois, Method for Manufacturing Biomass-derived Methyl Methacrylate, United States Pat., 20110301316 (2011). [12] D.W. Johnson, G.R. Eastham, M. Poliakoff, T.A. Huddle, A Process for the Production of (Meth)acrylic Acid and Derivatives and Polymers Produced Therefrom, United States Pat., 20150307433 (2015). [13] L.L. Zhou, L. Wang, Y.L. Cao, Y.Y. Diao, R.Y. Yan, S.J. Zhang, The states and effects of copper in Keggin-type heteropolyoxometalate catalysts on oxidation of methacrolein to methacrylic acid, Mol. Catal. 438 (2017) 47–54. http://dx.doi.org/10.1016/j.mcat.2017.04.031 [14] L.L. Zhou, L. Wang, Y.Y. Diao, R.Y. Yan, S.J. Zhang, Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid, Mol. Catal. 433 (2017) 153–161. http://dx.doi.org/10.1016/j.mcat.2017.01.023 [15] J.L. Ramos, Z. Udaondo, B. Fernández, C. Molina, A. Daddaoua, A. Segura, E. Duque, First- and second-generation biochemicals from sugars: biosynthesis of itaconic acid, Microb. Biotechnol. 9 (1) (2016) 8–10. https://pubmed.ncbi.nlm.nih.gov/26639664/ [16] S.T. Ahmed, N.G.H. Leferink, N.S. Scrutton, Chemo-enzymatic routes towards the synthesis of bio-based monomers and polymers, Mol. Catal. 467 (2019) 95–110. http://dx.doi.org/10.1016/j.mcat.2019.01.036 [17] D.W. Johnson, G.R. Eastham, M. Poliakoff, T.A. Huddle. Method of Producing Arcylic and Methacrylic Acid, United States Pat., 8933179 (2015). [18] D.W. Johnson, G.R. Eastham, M. Poliakoff, T.A. Huddle, Process for the Production of Methacrylic Acid and Derivatives and Polymers Produced Therefrom, United States Pat., 9890103 (2013). [19] D.W Johnson, G.R. Eastham, M. Poliakoff, T.A. Huddle, A Process for the Production of Methacrylic Acid and Derivatives and Polymers Produced therefrom, Canada Pat., 2825258 (2019). [20] M. Carlsson, C. Habenicht, L.C. Kam, M.J. Antal, N.Y. Bian, R.J. Cunningham, M. Jones, Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water, Ind. Eng. Chem. Res. 33 (8) (1994) 1989–1996. https://doi.org/10.1021/ie00032a014 [21] M. Carlsson, C. Habenicht, L.C. Kam, M.J. Antal, N.Y. Bian, R.J. Cunningham, M. Jones, Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water, Ind. Eng. Chem. Res. 33 (8) (1994) 1989–1996. https://doi.org/10.1021/ie00032a014 [22] M. Pirmoradi, J.R. Kastner, Synthesis of methacrylic acid by catalytic decarboxylation and dehydration of carboxylic acids using a solid base and subcritical water, ACS Sustainable Chem. Eng. 5 (2) (2017) 1517–1527. https://doi.org/10.1021/acssuschemeng.6b02201 [23] J.C. Lansing, R.E. Murray, B.R. Moser, Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid, ACS Sustain. Chem. Eng. 5 (4) (2017) 3132–3140. http://dx.doi.org/10.1021/acssuschemeng.6b02926 [24] A. Bohre, U. Novak, M. Grilc, B. Likozar, Synthesis of bio-based methacrylic acid from biomass-derived itaconic acid over Barium hexa-aluminate catalyst by selective decarboxylation reaction, Mol. Catal. 476 (2019) 110520. http://dx.doi.org/10.1016/j.mcat.2019.110520 [25] L.G. Ma, Y.R. Sun, D.L. Li, W.L. Lu, Structure and effect of hydroxyapatite support as well as application in catalyst preparation, J. Chin. Ceram. Soc. 47 (12) (2019) 1808-1817. [26] T. Tsuchida, K.B. Jun, T. Yoshioka, S. Sakuma, T. Takeguchi, W. Ueda, Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst, J. Catal. 259 (2) (2008) 183–189. http://dx.doi.org/10.1016/j.jcat.2008.08.005 [27] B. Yan, L.Z. Tao, Y. Liang, B.Q. Xu, Sustainable production of acrylic acid: catalytic performance of hydroxyapatites for gas-phase dehydration of lactic acid, ACS Catal. 4 (6) (2014) 1931–1943. http://dx.doi.org/10.1021/cs500388x [28] V.C. Ghantani, S.T. Lomate, M.K. Dongare, S.B. Umbarkar, Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts, Green Chem. 15 (5) (2013) 1211. https://doi.org/10.1039/c3gc40144h [29] G.S. Guo, Y.X. Sun, Z.H. Wang, H.Y. Guo, Preparation of hydroxyapatite nanorods by homogeneous precipitation method under hydrothermal condition, Mod. Chem. Ind. 10 (24) (2004) 43-45. [30] K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K, J. Mater. Chem. 17 (45) (2007) 4803. https://doi.org/10.1039/b711521k [31] L. Wang, X.M. He, W.T. Sun, J.L. Wang, Y.D. Li, S.S. Fan, Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials, Nano Lett. 12 (11) (2012) 5632–5636. http://dx.doi.org/10.1021/nl3027839 [32] H. Aoki, Medical applications of hydroxyapatite, Ishiyaku EuroAmerica, Inc. Tokyo, 1994. [33] J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, Stud. Org. Chem. 18 (1994) 94008066. https://www.mendeley.com/catalog/structure-chemistry-apatites-other-calcium-orthophosphates/ [34] A.K. Lynn, W. Bonfield, A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield, Acc. Chem. Res. 38 (3) (2005) 202–207. https://pubmed.ncbi.nlm.nih.gov/15766239/ [35] A. Bohre, M.A. Ali, M. Ocepek, M. Grilc, J. Zabret, B. Likozar, Copolymerization of biomass-derived carboxylic acids for biobased acrylic emulsions, Ind. Eng. Chem. Res. 58 (43) (2019) 19825–19831. https://doi.org/10.1021/acs.iecr.9b04057 [36] A.P. Burgard, M.J. Burk, R.E. Osterhout, P. Pharkya. Microorganisms for the Production of Methacrylic Acid, United States Pat., 8241877 (2014). [37] J. Li, T.B. Brill, Spectroscopy of hydrothermal solutions 18: pH-dependent kinetics of itaconic acid reactions in real time, J. Phys. Chem. A 105 (48) (2001) 10839–10845. http://dx.doi.org/10.1021/jp012501s |