[1] L.-S. Fan, Chemical looping partial oxidation : gasification, reforming, and chemical syntheses, Cambridge University Press, Cambridge, 2017. [2] X. Zhu, Q. Imtiaz, F. Donat, C.R. Muller, F.X. Li, Chemical looping beyond combustion - a perspective, Energ. Environ. Sci., 13 (2020) 772-804. [3] L.-S. Fan, Chemical looping systems for fossil energy conversions, Wiley-AIChE, Hoboken, NJ, 2010. [4] Z.P. Hu, D. Yang, Z. Wang, Z.Y. Yuan, State-of-the-art catalysts for direct dehydrogenation of propane to propylene, Chin. J. Catal., 40 (2019) 1233-1254. [5] M.D. Marcinkowski, M.T. Darby, J.L. Liu, J.M. Wimble, F.R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, E.C.H. Sykes, Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation, Nat. Chem., 10 (2018) 325-332. [6] Z. Sarshar, F. Kleitz, S. Kaliaguine, Novel oxygen carriers for chemical looping combustion: La1-xCexBO3 (B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting, Energ. Environ. Sci., 4 (2011) 4258-4269. [7] F.X. Li, S.W. Luo, Z.C. Sun, X.G. Bao, L.-S. Fan, Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations, Energ. Environ. Sci., 4 (2011) 3661-3667. [8] X.H. Zhang, C.L. Pei, X. Chang, S. Chen, R. Liu, Z.J. Zhao, R.T. Mu, J.L. Gong, FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2 Splitting, J. Am. Chem. Soc., 142 (2020) 11540-11549. [9] V.P. Haribal, X.J. Wang, R. Dudek, C. Paulus, B. Turk, R. Gupta, F. Li, Modified Ceria for “Low-Temperature” CO2 Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat, Adv. Energ. Mater, 9 (2019) 1901963. [10] S. Chen, L. Zeng, H. Tian, X.Y. Li, J.L. Gong, Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane, ACS Catal., 7 (2017) 3548-3559. [11] A. Mishra, N. Galinsky, F. He, E.E. Santiso, F.X. Li, Perovskite-structured AMn(x)B(1-x)O(3) (A = Ca or Ba; B = Fe or Ni) redox catalysts for partial oxidation of methane, Catal. Sci. Technol., 6 (2016) 4535-4544. [12] Z. Cheng, D.S. Baser, S.G. Nadgouda, L. Qin, J.A. Fan, L.-S. Fan, C2 Selectivity Enhancement in Chemical Looping Oxidative Coupling of Methane over a Mg–Mn Composite Oxygen Carrier by Li-Doping-Induced Oxygen Vacancies, ACS Energ. Letters, 3 (2018) 1730-1736. [13] Y. Zhang, H.Q. Jiang, A novel route to improve methane aromatization by using a simple composite catalyst, Chem. Commun., 54 (2018) 10343-10346. [14] J. Dou, E. Krzystowczyk, A. Mishra, X. Liu, F. Li, Perovskite Promoted Mixed Cobalt–Iron Oxides for Enhanced Chemical Looping Air Separation, ACS Sustain. Chem. Eng., 6 (2018) 15528-15540. [15] Y. Kim, H.S. Lim, M. Lee, M. Kim, D. Kang, J.W. Lee, Enhanced Morphological Preservation and Redox Activity in Al-Incorporated NiFe2O4 for Chemical Looping Hydrogen Production, ACS Sustain. Chem. Eng., 9 (2021) 14800-14810. [16] W. Tian, H. Zhang, Z. Cui, X. Hu, Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system, Chin. J. Chem. Eng., 37 (2021) 184-196. [17] J. Liu, R. Hu, X. Liu, Q. Zhang, G. Ye, Z. Sui, X. Zhou, Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor, Chin. J. Chem. Eng., 47 (2022) 165-173. [18] S. Chen, L. Zeng, R.T. Mu, C.Y. Xiong, Z.J. Zhao, C.J. Zhao, C.L. Pei, L.M. Peng, J. Luo, L.-S. Fan, J.L. Gong, Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation, J. Am. Chem. Soc., 141 (2019) 18653-18657. [19] J. Qin, C. Pei, C. Zhao, Z. Lu, G. Sun, J. Gong, Techno-Economic Analysis of a Hybrid Process for Propylene and Ammonia Production, ACS Sustain. Chem. Eng., 10 (2022) 6999-7009. [20] J.J.H.B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides, Chem. Rev., 114 (2014) 10613-10653. [21] L. Zeng, Z. Cheng, J.A. Fan, L.-S. Fan, J.L. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem., 2 (2018) 349-364. [22] Y.F. Gao, L.M. Neal, F.X. Li, Li-Promoted LaxSr2-xFeO4-δ Core-Shell Redox Catalysts for Oxidative Dehydrogenation of Ethane under a Cyclic Redox Scheme, ACS Catal., 6 (2016) 7293-7302. [23] D.Y. Li, R.D. Xu, X.Y. Li, Z.Q. Li, X. Zhu, K.Z. Li, Chemical Looping Conversion of Gaseous and Liquid Fuels for Chemical Production: A Review, Energ. Fuel, 34 (2020) 5381-5413. [24] Z. Cheng, L. Qin, M.Q. Guo, M.Y. Xu, J.A. Fan, L.-S. Fan, Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process, Phys. Chem. Chem. Phys., 18 (2016) 32418-32428. [25] Y.F. Gao, X.J. Wang, J.C. Liu, C.D. Huang, K. Zhao, Z.L. Zhao, X.D. Wang, F.X. Li, A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane, Sci. Adv., 6 (2020), eaaz9339. [26] S. Yusuf, L.M. Neal, F.X. Li, Effect of Promoters on Manganese-Containing Mixed Metal Oxides for Oxidative Dehydrogenation of Ethane via a Cyclic Redox Scheme, ACS Catal., 7 (2017) 5163-5173. [27] X.Y. Li, C.L. Pei, J.L. Gong, Shale gas revolution: Catalytic conversion of C1-C3 light alkanes to value-added chemicals, Chem, 7 (2021) 1755-1801. [28] A. Ostace, Y.-Y. Chen, R. Parker, D.S. Mebane, C.O. Okoli, A. Lee, A. Tong, L.-S. Fan, L.T. Biegler, A.P. Burgard, D.C. Miller, D. Bhattacharyya, Kinetic model development and Bayesian uncertainty quantification for the complete reduction of Fe-based oxygen carriers with CH4, CO, and H2 for chemical looping combustion, Chem. Eng. Sci., 252 (2022) 117512. [29] A. Khawam, D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110 (2006) 17315-17328. [30] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermo. Acta, 520 (2011) 1-19. [31] I. Ahmed, H. de Lasa, 110th Anniversary: Kinetic Model for Syngas Chemical Looping Combustion Using a Nickel-Based Highly Performing Fluidizable Oxygen Carrier, Ind. Eng. Chem. Res., 58 (2019) 2801-2811. [32] Y. Tian, R.B. Dudek, P.R. Westmoreland, F.X. Li, Effect of Sodium Tungstate Promoter on the Reduction Kinetics of CaMn0.9Fe0.1O3 for Chemical Looping - Oxidative Dehydrogenation of Ethane, Chem. Eng. J., 398 (2020). [33] S.Y. Hosseini, M.R. Khosravi-Nikou, A. Shariati, Kinetic Study of the Reduction Step for Chemical Looping Steam Methane Reforming by CeO2-Fe2O3 Oxygen Carriers, Chem. Eng. Technol., 43 (2020) 540-552. [34] Z.S. Li, First-principles-based microkinetic rate equation theory for oxygen carrier reduction in chemical looping, Chem. Eng. Sci., 247 (2022) 117042. [35] S.W. Yang, E. Iglesia, A.T. Bell, Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural characterization and catalytic function, J. Phys. Chem. B, 109 (2005) 8987-9000. [36] S. Rostom, H. de Lasa, High Propylene Selectivity via Propane Oxidative Dehydrogenation Using a Novel Fluidizable Catalyst: Kinetic Modeling, Ind. Eng. Chem. Res., 57 (2018) 10251-10260. [37] M.M. Hossain, Kinetics of Oxidative Dehydrogenation of Propane to Propylene Using Lattice Oxygen of VOX/CaO/γ-Al2O3 Catalysts, Ind. Eng. Chem. Res., 56 (2017) 4309-4318. [38] S. Rostom, H. de Lasa, Downer fluidized bed reactor modeling for catalytic propane oxidative dehydrogenation with high propylene selectivity, Chem. Eng. Process., 137 (2019) 87-99. [39] C. Dueso, M. Ortiz, A. Abad, F. Garcia-Labiano, L.F. de Diego, P. Gayan, J. Adanez, Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming, Chem. Eng. J., 188 (2012) 142-154. [40] R. Xiao, Q.L. Song, M. Song, Z.J. Lu, S.A. Zhang, L.H. Shen, Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier, Combust. Flame, 157 (2010) 1140-1153. [41] Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion, Chem. Eng. Sci., 62 (2007) 6556-6567. [42] D. Ipsakis, E. Heracleous, L. Silvester, D.B. Bukur, A.A. Lemonidou, Reaction-based kinetic model for the reduction of supported NiO oxygen transfer materials by CH4, Catal. Today, 343 (2020) 72-79. [43] F. Garcia-Labiano, L.F. de Diego, J. Adanez, A. Abad, P. Gayan, Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion, Ind. Eng. Chem. Res., 43 (2004) 8168-8177. [44] Y.Y. Chen, S. Nadgouda, V. Shah, L.-S. Fan, A. Tong, Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect, App. Energ., 279 (2020) 115701. [45] T. Mattisson, E. Jerndal, C. Linderholm, A. Lyngfelt, Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion, Chem. Eng. Sci., 66 (2011) 4636-4644. [46] W.T. Hu, F. Donat, S.A. Scott, J.S. Dennis, Kinetics of oxygen uncoupling of a copper based oxygen carrier, App. Energ., 161 (2016) 92-100. [47] H. Ahn, S. Choi, A comparison of the shrinking core model and the grain model for the iron ore pellet indurator simulation, Comput. Chem. Eng., 97 (2017) 13-26. [48] J. Riley, R. Siriwardane, H. Tian, W. Benincosa, J. Poston, Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications, App. Energ., 228 (2018) 1515-1530. [49] J. Riley, R. Siriwardane, H.J. Tian, W. Benincosa, J. Poston, Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications, App. Energ., 251 (2019) 113178. [50] F.X. Li, Z.C. Sun, S.W. Luo, L.-S. Fan, Ionic diffusion in the oxidation of iron-effect of support and its implications to chemical looping applications, Energ. Environ. Sci., 4 (2011) 876-880. [51] A. Aba, A. Cabello, P. Gayan, F. Garcia-Labiano, L.F. de Diego, T. Mendiara, J. Adanez, Kinetics of CaMn0.775Ti0.125Mg0.1O2.9-δ perovskite prepared at industrial scale and its implication on the performance of chemical looping combustion of methane, Chem. Eng. J., 394 (2020) 124863. [52] A. Bruix, J.T. Margraf, M. Andersen, K. Reuter, First-principles-based multiscale modelling of heterogeneous catalysis, Nat. Catal., 2 (2019) 659-670. [53] W. Benincosa, R. Siriwardane, H.J. Tian, J. Riley, J. Poston, A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion, App. Energ., 262 (2020) 114407. [54] A.H. Motagamwala, J.A. Dumesic, Microkinetic Modeling: A Tool for Rational Catalyst Design, Chem. Rev., 121 (2021) 1049-1076. [55] Z.S. Li, J.Z. Cai, L. Liu, A First-Principles Microkinetic Rate Equation Theory for Heterogeneous Reactions: Application to Reduction of Fe2O3 in Chemical Looping, Ind. Eng. Chem. Res., 60 (2021) 15514-15524. [56] K. Routray, W. Zhou, C.J. Kiely, I.E. Wachs, Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites, ACS Catal., 1 (2011) 54-66. [57] N. Knoblauch, L. Dorrer, P. Fielitz, M. Schmucker, G. Borchardt, Surface controlled reduction kinetics of nominally undoped polycrystalline CeO2, Phys. Chem. Chem. Phys., 17 (2015) 5849-5860. [58] J. Crank, The Mathematics Of Diffusion, Oxford university press, London, 1956. [59] S. Chen, C.L. Pei, X. Chang, Z.J. Zhao, R.T. Mu, Y.Y. Xu, J.L. Gong, Coverage-Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation, Angew. Chem. Int. Edit., 59 (2020) 22072-22079. [60] J.H. Carter, T. Bere, J.R. Pitchers, D.G. Hewes, B.D. Vandegehuchte, C.J. Kiely, S.H. Taylor, G.J. Hutchings, Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application, Green Chem., 23 (2021) 9747-9799. [61] M. Anpo, G. Costentin, E. Giamello, H. Lauron-Pernot, Z. Sojka, Characterisation and reactivity of oxygen species at the surface of metal oxides, J. Catal., 393 (2021) 259-280. [62] J. Haber, Selectivity in Heterogeneous Catalytic Oxidation of Hydrocarbons, Heterogeneous Hydrocarbon Oxidation, American Chemical Society1996, pp. 20-34. [63] J. Haber, W. Turek, Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene, J. Catal., 190 (2000) 320-326. [64] Z. Cheng, L. Qin, J.A. Fan, L.-S. Fan, New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems, Engineering, 4 (2018) 343-351. [65] N.L. Galinsky, Y. Huang, A. Shafiefarhood, F.X. Li, Iron Oxide with Facilitated O2- Transport for Facile Fuel Oxidation and CO2 Capture in a Chemical Looping Scheme, ACS Sustain. Chem. Eng., 1 (2013) 364-373. [66] L.M. Neal, A. Shafiefarhood, F.X. Li, Dynamic Methane Partial Oxidation Using a Fe2O3@La0.8Sr0.2FeO3-δ Core-Shell Redox Catalyst in the Absence of Gaseous Oxygen, ACS Catal., 4 (2014) 3560-3569. [67] R.A. De Souza, Limits to the rate of oxygen transport in mixed-conducting oxides, J. Mater. Chem. A, 5 (2017) 20334-20350. |