[1] J.Y. Chen, Y. Tang, W. Zhang, Y.C. Wang, L.M. Qiu, X.B. Zhang, Computational fluid dynamic simulations on liquid film behaviors at flooding in an inclined pipe, Chin. J. Chem. Eng. 23 (9) (2015) 1460–1468. [2] W.S. Wang, Y.H. Liao, Y.Z. Yan, B.C. Zhao, T. Wang, S.S. Shangguan, Numerical study on falling film flowing characteristics of R113 inside vertical tube under different structural conditions, Chin. J. Chem. Eng. 28 (1) (2020) 23–32. [3] P.C. Pedersen, Z. Cakareski, J.C. Hermanson, Ultrasonic monitoring of film condensation for applications in reduced gravity, Ultrasonics 38 (1–8) (2000) 486–490. [4] J. Zhang, B.W. Drinkwater, R.S. Dwyer-Joyce, Calibration of the ultrasonic lubricant-film thickness measurement technique, Meas. Sci. Technol. 16 (9) (2005) 1784–. [5] M.B. de Azevedo, D.D. Santos, J.L.H. Faccini, J. Su, Experimental study of the falling film of liquid around a Taylor bubble, Int. J. Multiph. Flow 88 (2017) 133–141. [6] L.C. Yan, Y.F. Wang, Z.W. Wu, Z.H. Dai, G.S. Yu, F.C. Wang, Research of vertical falling film behavior in scrubbing-cooling tube, Chem. Eng. Res. Des. 117 (2017) 627–636. [7] F.C. Liang, H.F. Zheng, H. Yu, Y. Sun, Gas–liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe, Meas. Sci. Technol. 27 (3) (2016) 035304. [8] F.C. Liang, Z.J. Fang, J. Chen, S.T. Sun, Investigating the liquid film characteristics of gas–liquid swirling flow using ultrasound Doppler velocimetry, AIChE J. 63 (6) (2017) 2348–2357. [9] A.A. Mouza, N.A. Vlachos, S.V. Paras, A.J. Karabelas, Measurement of liquid film thickness using a laser light absorption method, Exp. Fluids 28 (4) (2000) 355–359. [10] V. Voulgaropoulos, P. Angeli, Optical measurements in evolving dispersed pipe flows, Exp. Fluids 58 (12) (2017) 1–15. [11] H.N. Yang, W. Wei, M.X. Su, J. Chen, X.S. Cai, Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy, Flow Meas. Instrum. 60 (2018) 110–114. [12] Y.J. Youn, Y. Han, N. Shikazono, Liquid film thicknesses of oscillating slug flows in a capillary tube, Int. J. Heat Mass Transf. 124 (2018) 543–551. [13] Y.C. Yang, T. Zhang, D. Wang, S.W. Tang, Investigation of the liquid film thickness in an open-channel falling film micro-reactor by a stereo digital microscopy, J. Taiwan Inst. Chem. Eng. 98 (2019) 27–36. [14] T.Y. Li, T.Y. Lian, B.Y. Huang, X.Y. Yang, X.C. Liu, Y.Y. Li, Liquid film thickness measurements on a plate based on brightness curve analysis with acute PLIF method, Int. J. Multiph. Flow 136 (2021) 103549. [15] T. Fukano, A. Ousaka, Prediction of the circumferential distribution of film thickness in horizontal and near-horizontal gas–liquid annular flows, Int. J. Multiph. Flow 15 (3) (1989) 403–419. [16] P. de Jong, K.S. Gabriel, A preliminary study of two-phase annular flow at microgravity: Experimental data of film thickness, Int. J. Multiph. Flow 29 (8) (2003) 1203–1220. [17] P.J. Waltrich, G. Falcone, J.R. Barbosa Jr, Axial development of annular, churn and slug flows in a long vertical tube, Int. J. Multiph. Flow 57 (2013) 38–48. [18] P. Andreussi, E. Pitton, P. Ciandri, D. Picciaia, A. Vignali, M. Margarone, A. Scozzari, Measurement of liquid film distribution in near-horizontal pipes with an array of wire probes, Flow Meas. Instrum. 47 (2016) 71–82. [19] Y.J. Zhao, C.N. Markides, O.K. Matar, G.F. Hewitt, Disturbance wave development in two-phase gas–liquid upwards vertical annular flow, Int. J. Multiph. Flow 55 (2013) 111–129. [20] F.P. D'Aleo, P. Papadopoulos, H.M. Prasser, Miniaturized liquid film sensor (MLFS) for two phase flow measurements in square microchannels with high spatial resolution, Flow Meas. Instrum. 30 (2013) 10–17. [21] T. Arai, M. Furuya, T. Kanai, K. Shirakawa, Concurrent upward liquid slug dynamics on both surfaces of annular channel acquired with liquid film sensor, Exp. Therm. Fluid Sci. 60 (2015) 337–345. [22] A.A. Almabrok, A.M. Aliyu, L.Y. Lao, H. Yeung, Gas/liquid flow behaviours in a downward section of large diameter vertical serpentine pipes, Int. J. Multiph. Flow 78 (2016) 25–43. [23] H.M. Prasser, C. Bolesch, K. Cramer, D. Ito, P. Papadopoulos, A. Saxena, R. Zboray, Bubbly, slug, and annular two-phase flow in tight-lattice subchannels, Nucl. Eng. Technol. 48 (4) (2016) 847–858. [24] D.Y. Wang, N.D. Jin, L.S. Zhai, Y.Y. Ren, Measurement of liquid film thickness using distributed conductance sensor in multiphase slug flow, IEEE Trans. Ind. Electron. 67 (10) (2020) 8841–8850. [25] J. Kim, Y.C. Ahn, M.H. Kim, Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes, Flow Meas. Instrum. 20 (3) (2009) 103–109. [26] W.W. Wang, X. Liang, M.Z. Zhang, Measurement of gas–liquid two-phase slug flow with a Venturi meter based on blind source separation, Chin. J. Chem. Eng. 23 (9) (2015) 1447–1452. [27] R.C. Fernandes, R. Semiat, A.E. Dukler, Hydrodynamic model for gas–liquid slug flow in vertical tubes, AIChE J. 29 (6) (1983) 981–989. [28] X.T. Chen, J.P. Brill, Slug to churn transition in upward vertical two-phase flow, Chem. Eng. Sci. 52 (23) (1997) 4269–4272. [29] M.H. Zhang, L.M. Pan, H. He, X.H. Yang, M. Ishii, Experimental study of vertical co-current slug flow in terms of flow regime transition in relatively small diameter tubes, Int. J. Multiph. Flow 108 (2018) 140–155. [30] M.H. Zhang, L.M. Pan, P. Ju, X.H. Yang, M. Ishii, The mechanism of bubbly to slug flow regime transition in air–water two phase flow: A new transition criterion, Int. J. Heat Mass Transf. 108 (2017) 1579–1590. [31] Z.S. Mao, A.E. Dukler, An experimental study of gas–liquid slug flow, Exp. Fluids 8 (3–4) (1989) 169–182. [32] T. Furukawa, T. Fukano, Effects of liquid viscosity on flow patterns in vertical upward gas–liquid two-phase flow, Int. J. Multiph. Flow 27 (6) (2001) 1109–1126. [33] A. Scammell, J. Kim, Heat transfer and flow characteristics of rising Taylor bubbles, Int. J. Heat Mass Transf. 89 (2015) 379–389. [34] T. Wang, M. Gui, T. Zhang, Q.C. Bi, J.L. Zhao, Z.H. Liu, Experimental investigation on characteristic parameters of air–water slug flow in a vertical tube, Chem. Eng. Sci. 246 (2021) 116895. [35] G.B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969. [36] B. Wu, L. Briens, J.X. Zhu, Multi-scale flow behavior in gas–solids two-phase flow systems, Chem. Eng. J. 117 (3) (2006) 187–195. [37] M.S. Fraguío, M.C. Cassanello, F. Larachi, S. Limtrakul, M. Dudukovic, Classifying flow regimes in three-phase fluidized beds from CARPT experiments, Chem. Eng. Sci. 62 (24) (2007) 7523–7529. [38] M.R. Niu, Q.F. Liang, G.S. Yu, F.C. Wang, Z.H. Yu, Multifractal analysis of pressure fluctuation signals in an impinging entrained-flow gasifier, Chem. Eng. Process. Process. Intensif. 47 (4) (2008) 642–648. [39] O.A. Rosso, H.A. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes, Distinguishing noise from chaos, Phys. Rev. Lett. 99 (15) (2007) 154102. [40] L.X. Zhuang, N.D. Jin, A. Zhao, Z.K. Gao, L.S. Zhai, Y. Tang, Nonlinear multi-scale dynamic stability of oil–gas–water three-phase flow in vertical upward pipe, Chem. Eng. J. 302 (2016) 595–608. [41] B. Podobnik, H.E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. 100 (8) (2008) 084102. [42] C. Yan, L.S. Zhai, H.X. Zhang, H.M. Wang, N.D. Jin, Cross-correlation analysis of interfacial wave and droplet entrainment in horizontal liquid–liquid two-phase flows, Chem. Eng. J. 320 (2017) 416–426. [43] L. Zhu, N.D. Jin, Z.K. Gao, Y.B. Zong, Multi-scale cross entropy analysis for inclined oil–water two-phase countercurrent flow patterns, Chem. Eng. Sci. 66 (23) (2011) 6099–6108. [44] D.Y. Wang, N.D. Jin, Y.F. Han, F. Wang, Measurement of gas phase characteristics in vertical oil–gas–water slug and churn flows, Chem. Eng. Sci. 177 (2018) 53–73. [45] M.U. Ahmed, D.P. Mandic, Multivariate multiscale entropy: A tool for complexity analysis of multichannel data, Phys. Rev. E 84 (6 Pt 1) (2011) 061918. [46] Y.F. Han, N.D. Jin, L.S. Zhai, Y.Y. Ren, Experimental study of interaction between liquid droplets in oil–in–water emulsions using multivariate time series analysis, Chem. Eng. Sci. 192 (2018) 526–540. [47] Y. Yin, P.J. Shang, Multivariate weighted multiscale permutation entropy for complex time series, Nonlinear Dyn. 88 (3) (2017) 1707–1722. [48] D.Y. Wang, N.D. Jin, L.S. Zhai, Y.Y. Ren, Characterizing flow instability in oil–gas–water three-phase flow using multi-channel conductance sensor signals, Chem. Eng. J. 386 (2020) 121237. |