[1] H. Yan, Q.S. Wu, C.M. Yu, T.Y. Zhao, M.J. Liu, Recent progress of biomimetic antifouling surfaces in marine, Adv. Mater. Interf. 7 (20) (2020) 2000966. [2] X.Y. Hu, J.H. Tian, C. Li, H. Su, R.R. Qin, Y.F. Wang, X. Cao, P. Yang, Amyloid-like protein aggregates: A new class of bioinspired materials merging an interfacial anchor with antifouling, Adv. Mater. 32 (23) (2020) 2000128. [3] A. Vena, S. Kolle, S. Stafslien, J. Aizenberg, P. Kim, Self-stratifying porous silicones with enhanced liquid infusion and protective skin layer for biofouling prevention, Adv. Mater. Interf. 8 (2) (2021) 2000359. [4] M.S. Selim, S.A. El-Safty, M.A. Shenashen, S.A. Higazy, A. Elmarakbi, Progress in biomimetic leverages for marine antifouling using nanocomposite coatings, J. Mater. Chem. B 8 (17) (2020) 3701–3732. [5] S. Kinkley, J. Helmuth, J.K. Polansky, I. Dunkel, G. Gasparoni, S. Fröhler, W. Chen, J. Walter, A. Hamann, H.R. Chung, reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4+ memory T cells, Nat. Commun. 7 (2016) 12514. [6] M.S. Selim, M.A. Shenashen, S.A. El-Safty, S.A. Higazy, M.M. Selim, H. Isago, A. Elmarakbi, Recent progress in marine foul-release polymeric nanocomposite coatings, Prog. Mater. Sci. 87 (2017) 1–32. [7] M. Lejars, A. Margaillan, C. Bressy, Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings, Chem. Rev. 112 (8) (2012) 4347–4390. [8] R. Ciriminna, V. Pandarus, G. Gingras, F. Béland, M. Pagliaro, Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over SiliaCatPt(0), ACS Sustain. Chem. Eng. 1 (2) (2013) 249–253. [9] X. Su, D.Z. Hao, Z.N. Li, X.L. Guo, L. Jiang, Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling, J. Mater. Chem. B 7 (8) (2019) 1322–1332. [10] H. Okoro, O. Fatoki, F.A. Adekola, B.J. Ximba, R. Snyman, Sources, environmental levels and toxicity of organotin in marine environment: A review, Asain J. Chem. 23 (2) (2011) 473–482. [11] K.V. Thomas, S. Brooks, The environmental fate and effects of antifouling paint biocides, Biofouling 26 (1) (2010) 73–88. [12] R. Deng, T. Shen, H.L. Chen, J.X. Lu, H.C. Yang, W.H. Li, Slippery liquid-infused porous surfaces (SLIPSs): A perfect solution to both marine fouling and corrosion? J. Mater. Chem. A 8 (16) (2020) 7536–7547. [13] C.Q. Wei, G.F. Zhang, Q.H. Zhang, X.L. Zhan, F.Q. Chen, Silicone oil-infused slippery surfaces based on sol–gel process-induced nanocomposite coatings: A facile approach to highly stable bioinspired surface for biofouling resistance, ACS Appl. Mater. Interf. 8 (50) (2016) 34810–34819. [14] Q.Y. Xie, H.H. Zeng, Q.M. Peng, C. Bressy, C.F. Ma, G.Z. Zhang, Self-stratifying silicone coating with nonleaching antifoulant for marine anti-biofouling, Adv. Mater. Interf. 6 (13) (2019) 1900535. [15] P. Hu, Q.Y. Xie, C.F. Ma, G.Z. Zhang, Silicone-based fouling-release coatings for marine antifouling, Langmuir 36 (9) (2020) 2170–2183. [16] X.L. Zhan, G.F. Zhang, Q.H. Zhang, F.Q. Chen, Preparation, surface wetting properties, and protein adsorption resistance of well-defined amphiphilic fluorinated diblock copolymers, J. Appl. Polym. Sci. 131 (23) (2014), https://doi.org/10.1002/app.41167. [17] F. Gao, G.F. Zhang, Q.H. Zhang, X.L. Zhan, F.Q. Chen, Improved antifouling properties of poly(ether sulfone) membrane by incorporating the amphiphilic comb copolymer with mixed poly(ethylene glycol) and poly(dimethylsiloxane) brushes, Ind. Eng. Chem. Res. 54 (35) (2015) 8789–8800. [18] X. Chen, G.F. Zhang, Q.H. Zhang, X.L. Zhan, F.Q. Chen, Preparation and performance of amphiphilic polyurethane copolymers with capsaicin-mimic and PEG moieties for protein resistance and antibacteria, Ind. Eng. Chem. Res. 54 (15) (2015) 3813–3820. [19] G.X. Dai, Q.Y. Xie, X.Q. Ai, C.F. Ma, G.Z. Zhang, Self-generating and self-renewing zwitterionic polymer surfaces for marine anti-biofouling, ACS Appl. Mater. Interf. 11 (44) (2019) 41750–41757. [20] A. Ali, Y. Xiao, L.N. Song, J.K. Hu, Q.Q. Rao, M. Shoaib, B.U. Amin, X.L. Zhan, Q.H. Zhang, Biodegradable polyurethane based clay composite and their anti-biofouling properties, Colloids Surf. A Physicochem. Eng. Aspects 625 (2021) 126946. [21] Y.K. Demirel, M. Khorasanchi, O. Turan, A. Incecik, On the importance of antifouling coatings regarding ship resistance and powering, in: 3rd International Conference on Technologies, Operations, Logistics and Modelling for Low Carbon Shipping, 2013. [22] I.M. Organization , I.M.O.M.E.P. Committee, Anti-fouling systems: International Convention on the Control of Harmful Anti-fouling Systems on Ships, 2001 (AFS 2001) and Guidelines for Survey and Certification of Anti-fouling Systems on Ships (resolution MEPC. 102 (48)), Guidelines for Brief Sampling of Anti-fouling Systems on Ships (resolution MEPC. 104 (49)), and Guidelines for Inspection of Anti-fouling Systems on Ships (resolution , MEPC , 105 , IMO Publishing , 2005. [23] A. Ali, M.I. Jamil, J.X. Jiang, M. Shoaib, B.U. Amin, S.Z. Luo, X.L. Zhan, F.Q. Chen, Q.H. Zhang, An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications, J. Polym. Res. 27 (4) (2020) 1–17. [24] Q.Y. Xie, J.S. Pan, C.F. Ma, G.Z. Zhang, Dynamic surface antifouling: Mechanism and systems, Soft Matter 15 (6) (2019) 1087–1107. [25] S.S. Chen, C.F. Ma, G.Z. Zhang, Biodegradable polymers for marine antibiofouling: Poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant, Polymer 90 (2016) 215–221. [26] J.L. Ma, C.F. Ma, G.Z. Zhang, Degradable polymer with protein resistance in a marine environment, Langmuir 31 (23) (2015) 6471–6478. [27] Q.Y. Xie, Q.N. Xie, J.S. Pan, C.F. Ma, G.Z. Zhang, Biodegradable polymer with hydrolysis-induced zwitterions for antibiofouling, ACS Appl. Mater. Interf. 10 (13) (2018) 11213–11220. [28] Y.F. Wang, Q.F. Hong, Y.J. Chen, X.X. Lian, Y.F. Xiong, Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers, Colloids Surf. B Biointerf. 100 (2012) 77–83. [29] R. Konradi, B. Pidhatika, A. Mühlebach, M. Textor, Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces, Langmuir 24 (3) (2008) 613–616. [30] G. Emilsson, R.L. Schoch, L. Feuz, F. Höök, R.Y.H. Lim, A.B. Dahlin, Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to, ACS Appl. Mater. Interf. 7 (14) (2015) 7505–7515. [31] S.Y. Jiang, Z.Q. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22 (9) (2010) 920–932. [32] J. Wu, C. Zhao, R.D. Hu, W.F. Lin, Q.M. Wang, J. Zhao, S.M. Bilinovich, T.C. Leeper, L.Y. Li, H.M. Cheung, S.F. Chen, J. Zheng, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers, Acta Biomater. 10 (2) (2014) 751–760. [33] W. Yandi, S. Mieszkin, A. di Fino, P. Martin-Tanchereau, M.E. Callow, J.A. Callow, L. Tyson, A.S. Clare, T. Ederth, Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling, Biofouling 32 (6) (2016) 609–625. [34] J. Koc, T. Simovich, E. Schönemann, A. Chilkoti, H. Gardner, G.W. Swain, K. Hunsucker, A. Laschewsky, A. Rosenhahn, Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment, Biofouling 35 (4) (2019) 454–462. [35] C.F. Ma, H.J. Yang, X. Zhou, B. Wu, G.Z. Zhang, Polymeric material for anti-biofouling, Colloids Surf. B Biointerf. 100 (2012) 31–35. [36] C.H. Tsou, H.T. Lee, H.A. Tsai, H.J. Cheng, M.C. Suen, Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender, Polym. Degrad. Stab. 98 (2) (2013) 643–650. [37] C.H. Tsou, H.T. Lee, W.S. Hung, C.C. Wang, C.C. Shu, M.C. Suen, M. de Guzman, Synthesis and properties of antibacterial polyurethane with novel bis(3-pyridinemethanol) silver chain extender, Polymer 85 (2016) 96–105. [38] G.R. da Silva, A. da Silva-Cunha Jr, F. Behar-Cohen, E. Ayres, R.L. Oréfice, Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products, Polym. Degrad. Stab. 95 (4) (2010) 491–499. [39] M.H. Xiao, N. Zhang, J. Zhuang, Y.C. Sun, F. Ren, W.W. Zhang, Z.S. Hou, Degradable poly(ether-ester-urethane)s based on well-defined aliphatic diurethane diisocyanate with excellent shape recovery properties at body temperature for biomedical application, Polymers 11 (6) (2019) 1002. [40] S.Z. Fu, L.L. Yang, J. Fan, Q.L. Wen, S. Lin, B.Q. Wang, L.L. Chen, X.H. Meng, Y. Chen, J.B. Wu, In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application, Colloids Surf. B Biointerfaces 107 (2013) 167–173. [41] Y. Li, H.M. Chen, D. Liu, W.X. Wang, Y. Liu, S.B. Zhou, pH-responsive shape memory poly(ethylene glycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite, ACS Appl. Mater. Interf. 7 (23) (2015) 12988–12999. [42] H.P. Wang, D.J. Tong, L. Wang, L. Chen, N. Yu, Z.X. Li, A facile strategy for fabricating PCL/PEG block copolymer with excellent enzymatic degradation, Polym. Degrad. Stab. 140 (2017) 64–73. [43] L.D. Zhu, K.M. Bratlie, Supramolecular assemblies of alkane functionalized polyethylene glycol copolymers for drug delivery, Mater. Sci. Eng. C 81 (2017) 432–442. [44] Q.N. Xie, X. Zhou, C.F. Ma, G.Z. Zhang, Self-cross-linking degradable polymers for antifouling coatings, Ind. Eng. Chem. Res. 56 (18) (2017) 5318–5324. [45] American Society for Testing and Materials, Standard practice for the preparation of substitute ocean water, ASTM International, 2013. [46] A. Güney, C. Gardiner, A. McCormack, J. Malda, D.W. Grijpma, Thermoplastic PCL-b-PEG-b-PCL and HDI polyurethanes for extrusion-based 3D-printing of tough hydrogels, Bioengineering 5 (4) (2018) 99. [47] A. Ali, L.N. Song, J.K. Hu, J.X. Jiang, Q.Q. Rao, M. Shoaib, S. Fahad, Y.J. Cai, X.L. Zhan, F.Q. Chen, Q.H. Zhang, Synthesis and characterization of caprolactone based polyurethane with degradable and antifouling performance, Chin. J. Chem. Eng. 34 (2021) 299–306. [48] J.L. Ma, C.F. Ma, Y. Yang, W.T. Xu, G.Z. Zhang, Biodegradable polyurethane carrying antifoulants for inhibition of marine biofouling, Ind. Eng. Chem. Res. 53 (32) (2014) 12753–12759. [49] C.F. Ma, L.G. Xu, W.T. Xu, G.Z. Zhang, Degradable polyurethane for marine anti-biofouling, J. Mater. Chem. B 1 (24) (2013) 3099–3106. [50] F. Faÿ, I. Linossier, J.J. Peron, V. Langlois, K. Vallée-Rehel, Antifouling activity of marine paints: Study of erosion, Prog. Org. Coat. 60 (3) (2007) 194–206. [51] E. Guégain, J.P. Michel, T. Boissenot, J. Nicolas, Tunable degradation of copolymers prepared by nitroxide-mediated radical ring-opening polymerization and point-by-point comparison with traditional polyesters, Macromolecules 51 (3) (2018) 724–736. [52] C.F. Ma, W.T. Xu, J.S. Pan, Q.Y. Xie, G.Z. Zhang, Degradable polymers for marine antibiofouling: Optimizing structure to improve performance, Ind. Eng. Chem. Res. 55 (44) (2016) 11495–11501. [53] J. Pan, Q. Xie, H. Chiang, Q. Peng, P.Y. Qian, C. Ma, G. Zhang, “From the nature for the nature”: An eco-friendly antifouling coating consisting of poly(lactic acid)-based polyurethane and natural antifoulant, ACS Sustain. Chem. Eng. 8 (3) (2019) 1671-1678. [54] S.S. Chen, C.F. Ma, G.Z. Zhang, Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling, Prog. Org. Coat. 104 (2017) 58–63. [55] B.L. Ou, M.L. Chen, Y.J. Guo, Y.H. Kang, Y. Guo, S.G. Zhang, J.H. Yan, Q.Q. Liu, D.X. Li, Preparation of novel marine antifouling polyurethane coating materials, Polym. Bull. 75 (11) (2018) 5143–5162. [56] C.F. Ma, W.P. Zhang, G.Z. Zhang, P.Y. Qian, Environmentally friendly antifouling coatings based on biodegradable polymer and natural antifoulant, ACS Sustain. Chem. Eng. 5 (7) (2017) 6304–6309. [57] M.L. Chen, B.L. Ou, Y.J. Guo, Y. Guo, Y.H. Kang, H.Y. Liu, J.H. Yan, L. Tian, Preparation of an environmentally friendly antifouling degradable polyurethane coating material based on medium-length fluorinated diols, J. Macromol. Sci. A 55 (6) (2018) 483–488. [58] T. Ekblad, G. Bergström, T. Ederth, S.L. Conlan, R. Mutton, A.S. Clare, S. Wang, Y.L. Liu, Q. Zhao, F. D’Souza, G.T. Donnelly, P.R. Willemsen, M.E. Pettitt, M.E. Callow, J.A. Callow, B. Liedberg, Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments, Biomacromolecules 9 (10) (2008) 2775–2783. [59] M. Ulbricht, H. Yang, Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization, Chem. Mater. 17 (10) (2005) 2622–2631. [60] G. Cheng, H. Xue, Z. Zhang, S.F. Chen, S.Y. Jiang, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities, Angew. Chem. Int. Ed. 47 (46) (2008) 8831–8834. [61] T. McPherson, A. Kidane, I. Szleifer, K. Park, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: Experiments and single-chain mean-field analysis, Langmuir 14 (1) (1998) 176–186. [62] J.H. Yao, Z.W. Dai, J. Yi, H.L. Yu, B. Wu, L.Y. Dai, Degradable polyurethane based on triblock polyols composed of polypropyleneglycol and ε-caprolactone for marine antifouling applications, J. Coat. Technol. Res. 17 (4) (2020) 865–874. |