[1] R.A. Kerr, Global warming is changing the world, Science 316 (5822) (2007) 188–190. [2] D.R. Feldman, W.D. Collins, P.J. Gero, M.S. Torn, E.J. Mlawer, T.R. Shippert, Observational determination of surface radiative forcing by CO2 from 2000 to 2010, Nature 519 (7543) (2015) 339–343. [3] P. Tans, R. Keeling, Trends in atmospheric carbon dioxide, 2020, www.esrl.noaa.gov/gmd/ccgg/trends/. [4] C.D. Keeling, P. Tans, R. Keeling, Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory, 2021, https://research.noaa.gov/article/ArtMID/587/ArticleID/2764. [5] K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell, K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Appl. Energy 260 (2020) 114316. [6] D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci. 5 (4) (2012) 6465–6473. [7] M.H. Yu, P. Zhang, R. Feng, Z.Q. Yao, Y.C. Yu, T.L. Hu, X.H. Bu, Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture, ACS Appl. Mater. Interfaces 9 (31) (2017) 26177–26183. [8] N.A. Rashidi, S. Yusup, A review on recent technological advancement in the activated carbon production from oil palm wastes, Chem. Eng. J. 314 (2017) 277–290. [9] G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater. 22 (7) (2010) 853–857. [10] P.Y. Li, F.H. Tezel, Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite, Microporous Mesoporous Mater. 98 (1–3) (2007) 94–101. [11] H. Thakkar, A. Issa, A.A. Rownaghi, F. Rezaei, CO2 capture from air using amine-functionalized Kaolin-based zeolites, Chem. Eng. Technol. 40 (11) (2017) 1999–2007. [12] L.W. Sun, M. Gao, S.K. Tang, Porous amino acid-functionalized poly(ionic liquid) foamed with supercritical CO2 and its application in CO2 adsorption, Chem. Eng. J. 412 (2021) 128764. [13] W. Ying, J.S. Cai, K. Zhou, D.K. Chen, Y.L. Ying, Y. Guo, X.Q. Kong, Z.P. Xu, X.S. Peng, Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane, ACS Nano 12 (6) (2018) 5385–5393. [14] Y.D. Cui, B. He, X.M. Liu, J. Sun, Ionic liquids-promoted electrocatalytic reduction of carbon dioxide, Ind. Eng. Chem. Res. 59 (46) (2020) 20235–20252. [15] F. Liu, Y. Shen, L. Shen, C. Sun, L. Chen, Q.L. Wang, S.J. Li, W. Li, Novel amino-functionalized ionic liquid/organic solvent with low viscosity for CO2 capture, Environ. Sci. Technol. 54 (6) (2020) 3520–3529. [16] M.T. Huang, J.Y. Cao, Y.Z. Hong, Y.Z. Su, H.T. Wang, J. Li, Sorption and separation of CO2 from syngas by a quaternary ammonium-based poly(ionic liquid), Ind. Eng. Chem. Res. 58 (19) (2019) 8317–8322. [17] Y.M. Zhao, X.C. Shan, Q.D. An, Z.Y. Xiao, S.R. Zhai, Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture, Chem. Eng. J. 398 (2020) 125561. [18] X.Z. Meng, B. Scheidemantle, M. Li, Y.Y. Wang, X.H. Zhao, M. Toro-González, P. Singh, Y.Q. Pu, C.E. Wyman, S. Ozcan, C.M. Cai, A.J. Ragauskas, Synthesis, characterization, and utilization of a lignin-based adsorbent for effective removal of azo dye from aqueous solution, ACS Omega 5 (6) (2020) 2865–2877. [19] C. He, M.F. Ke, Z.B. Zhong, Q.F. Ye, L. He, Y. Chen, J.P. Zhou, Effect of the degree of acetylation of chitin nonwoven fabrics for promoting wound healing, ACS Appl. Bio Mater. 4 (2) (2021) 1833–1842. [20] T. Danner, H. Justnes, M. Geiker, R.A. Lauten, Early hydration of C3A-gypsum pastes with Ca- and Na-lignosulfonate, Cem. Concr. Res. 79 (2016) 333–343. [21] X. Tao, L.S. Shi, M.J. Sun, N. Li, Synthesis of lignin amine asphalt emulsifier and its investigation by online FTIR spectrophotometry, Adv. Mater. Res. 909 (2014) 72–76. [22] J. Sun, W.G. Cheng, Z.F. Yang, J.Q. Wang, T.T. Xu, J.Y. Xin, S.J. Zhang, Superbase/cellulose: An environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates, Green Chem. 16 (2014) 3071–3078. [23] D. Xiao, W. Ding, J.B. Zhang, Y.Y. Ge, Z.J. Wu, Z.L. Li, Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition, Chem. Eng. J. 358 (2019) 310–320. [24] F.G. Chen, S.I.S. Shahabadi, D. Zhou, W.S. Liu, J.H. Kong, J.W. Xu, X.H. Lu, Facile preparation of cross-linked lignin for efficient adsorption of dyes and heavy metal ions, React. Funct. Polym. 143 (2019) 104336. [25] T. Saito, R.H. Brown, M.A. Hunt, D.L. Pickel, J.M. Pickel, J.M. Messman, F.S. Baker, M. Keller, A.K. Naskar, Turning renewable resources into value-added polymer: Development of lignin-based thermoplastic, Green Chem. 14 (12) (2012) 3295–3303. [26] Y. Meng, C.X. Li, X.Q. Liu, J. Lu, Y. Cheng, L.P. Xiao, H.S. Wang, Preparation of magnetic hydrogel microspheres of lignin derivate for application in water, Sci. Total. Environ. 685 (2019) 847–855. [27] Z.G. Liu, L.L. Zhao, S. Cao, S. Wang, P.Z. Li, Preparation and evaluation of a novel cationic amphiphilic lignin derivative with high surface activity, BioResources 8 (4) (2013) 6111–6120. [28] A.A. Chirkunov, Y.I. Kuznetsov, M.A. Gusakova, Protection of low-carbon steel in aqueous solutions by lignosulfonate inhibitors, Prot. Met. 43 (4) (2007) 367–372. [29] Y.X. Pang, W. Gao, H.M. Lou, M.S. Zhou, X.Q. Qiu, Influence of modified lignosulfonate GCL4-1 with different molecular weight on the stability of dimethomorph water based suspension, Colloids Surf. A Physicochem. Eng. Aspects 441 (2014) 664–668. [30] Y.L. Qin, X.Q. Qiu, W.S. Liang, D.J. Yang, Investigation of adsorption characteristics of sodium lignosulfonate on the surface of disperse dye using a quartz crystal microbalance with dissipation, Ind. Eng. Chem. Res. 54 (49) (2015) 12313–12319. [31] Y.L. Qin, D.J. Yang, W.Y. Guo, X.Q. Qiu, Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal–water slurry, J. Ind. Eng. Chem. 27 (2015) 192–200. [32] M. Nie, S. Huo, Z. Kong, Research progress of lignin model compounds, Chem. Ind. Forest Prod. 30 (5) (2010) 115–121. (in Chinese) [33] A. Bjelić, M. Grilc, B. Likozar, Bifunctional metallic-acidic mechanisms of hydrodeoxygenation of eugenol as lignin model compound over supported Cu, Ni, Pd, Pt, Rh and Ru catalyst materials, Chem. Eng. J. 394 (2020) 124914. [34] M. Lei, B. Luo, Q.T. Zhang, C.Y. Guo, M.C. Chi, X.J. Yun, C.Z. Chen, D.Y. Min, S.F. Wang, Kinetics of the reaction between a lignin model compound and chlorine dioxide, Chem. Eng. J. 393 (2020) 124783. [35] B.X. Zheng, J.L. Song, H.H. Wu, S.T. Han, J.X. Zhai, K.L. Zhang, W. Wu, C.Y. Xu, M.Y. He, B.X. Han, Palladium-catalyzed synthesis of 4-cyclohexylmorpholines from reductive coupling of aryl ethers and lignin model compounds with morpholines, Green Chem. 23 (1) (2021) 268–273. [36] X. Luo, C. Liu, J. Yuan, X. Zhu, S. Liu, Interfacial solid-phase chemical modification with mannich reaction and Fe(III) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water, ACS Sustainable Chem. Eng. 5 (2017) 6539–6547. [37] M. Nie, Z. Kong, S. Huo, G. Wu, J. Chen, Mannich reaction of lignin model compound vanillin and chemical structure characterization of its product, Chem. Ind. Forest Prod. 32 (3) (2012) 13–18. (in Chinese) [38] S.J. Zeng, H.S. Gao, X.C. Zhang, H.F. Dong, X.P. Zhang, S.J. Zhang, Efficient and reversible capture of SO2 by pyridinium-based ionic liquids, Chem. Eng. J. 251 (2014) 248–256. [39] S.J. Zeng, L. Liu, D.W. Shang, J.P. Feng, H.F. Dong, Q.X. Xu, X.P. Zhang, S.J. Zhang, Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid-base and cooperative hydrogen bond interactions, Green Chem. 20 (9) (2018) 2075–2083. [40] H. Yan, L. Zhao, Y.G. Bai, F.F. Li, H.F. Dong, H. Wang, X.P. Zhang, S.J. Zeng, Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption, ACS Sustainable Chem. Eng. 8 (6) (2020) 2523–2530. [41] M. Orio, D.A. Pantazis, F. Neese, Density functional theory, Photosynth. Res. 102 (2–3) (2009) 443–453. [42] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (1–3) (2008) 215–241. [43] A. Schäfer, C. Huber, R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. 100 (8) (1994) 5829–5835. [44] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (18) (2009) 6378–6396. [45] D.W. Zhao, M. Feng, L. Zhang, B. He, X.Y. Chen, J. Sun, Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond, Carbohydr. Polym. 256 (2021) 117580. [46] Y.H. Gad, R.O. Aly, S.E. Abdel-Aal, Synthesis and characterization of Na-alginate/acrylamide hydrogel and its application in dye removal, J. Appl. Polym. Sci. 120 (4) (2011) 1899–1906. [47] J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (7414) (2012) 133–136. [48] H.Y. Ran, J.X. Wang, A.A. Abdeltawab, X.C. Chen, G.R. Yu, Y.H. Yu, Synthesis of polymeric ionic liquids material and application in CO2 adsorption, J. Energy Chem. 26 (5) (2017) 909–918. [49] D.G. Jia, L. Ma, Y. Wang, W.L. Zhang, J. Li, Y. Zhou, J. Wang, Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers, Chem. Eng. J. 390 (2020) 124652. [50] N.S. Naik, M. Padaki, S. Déon, D.H.K. Murthy, Novel poly(ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste, Chem. Eng. J. 401 (2020) 126148. [51] E.M. Zong, G.B. Huang, X.H. Liu, W.W. Lei, S.T. Jiang, Z.Q. Ma, J.F. Wang, P.G. Song, A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate, J. Mater. Chem. A 6 (21) (2018) 9971–9983. [52] B. Ruffin, S. Grelier, A. Nourmamode, A. Castellan, Attempt to approach the role of phenolic phenylpropenol structures in the photoyellowing of softwood mechanical pulps, Can. J. Chem. 80 (9) (2002) 1223–1231. [53] A.V. Bhaskar Reddy, M. Moniruzzaman, M.A. Bustam, M. Goto, B.B. Saha, C. Janiak, Ionic liquid polymer materials with tunable nanopores controlled by surfactant aggregates: A novel approach for CO2 capture, J. Mater. Chem. A 8 (30) (2020) 15034–15041. [54] R.B. Leron, M.H. Li, Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent, Thermochimica Acta 551 (2013) 14–19. [55] L.W. Sun, J.Y. Luo, M. Gao, S.K. Tang, Bi-functionalized ionic liquid porous copolymers for CO2 adsorption and conversion under ambient pressure, React. Funct. Polym. 154 (2020) 104636. [56] Y. Zhou, W.L. Zhang, L. Ma, Y. Zhou, J. Wang, Amino acid anion paired mesoporous poly(ionic liquids) as metal-/ halogen-free heterogeneous catalysts for carbon dioxide fixation, ACS Sustainable Chem. Eng. 7 (10) (2019) 9387–9398. [57] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (6) (2002) 926–927. [58] C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed. 50 (21) (2011) 4918–4922. [59] G. Cui, M. Lv, D.Z. Yang, Efficient CO2 absorption by azolide-based deep eutectic solvents, Chem. Commun. 55 (10) (2019) 1426–1429. [60] X.Y. Luo, Y. Guo, F. Ding, H.Q. Zhao, G.K. Cui, H.R. Li, C.M. Wang, Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions, Angew. Chem. Int. Ed. 53 (27) (2014) 7053–7057. |