[1] I. Ahmad, A.B. Mozhi, L. Yang, Q.S. Han, X.J. Liang, C. Li, R. Yang, C. Wang, Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation, Colloids Surf. B Biointerfaces 159 (2017) 540–545. [2] H. Amiri, K. Saeidi, P. Borhani, A. Manafirad, M. Ghavami, V. Zerbi, Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents, ACS Chem. Neurosci. 4 (11) (2013) 1417–1429. [3] W.P. Zhao, L.Y. Jiang, W.J. Wang, J.C. Sang, Q.C. Sun, Q.C. Dong, L. Li, F.P. Lu, F.F. Liu, Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism, J. Mater. Chem. B 9 (34) (2021) 6902–6914. [4] Y.D. Huang, L. Mucke, Alzheimer mechanisms and therapeutic strategies, Cell 148 (6) (2012) 1204–1222. [5] X.L. Huo, Y.Q. Zhang, X.C. Jin, Y.A. Li, L. Zhang, A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease, J. Photochem. Photobiol. B Biol. 190 (2019) 98–102. [6] J. Kowalczyk, E. Grapsi, A. Espargaró, A.B. Caballero, J. Juárez-Jiménez, M.A. Busquets, P. Gamez, R. Sabate, J. Estelrich, Dual effect of Prussian blue nanoparticles on Aβ40 aggregation: β-sheet fibril reduction and copper dyshomeostasis regulation, Biomacromolecules 22 (2) (2021) 430–440. [7] W. Liu , X.T. Sun , X.Y. Dong , Y. Sun, Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis, Chin. J. Chem. Eng. 48 (2022) 227–235. [8] L.C. Yang, J. Sun, W.J. Xie, Y.N. Liu, J. Liu, Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer's disease, J. Mater. Chem. B 5 (30) (2017) 5954–5967. [9] Y.X. Zhang, Y.J. Tang, D. Zhang, Y.L. Liu, J. He, Y. Chang, J. Zheng, Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes, Chin. J. Chem. Eng. 30 (2021) 225–235. [10] F. Huang, A.T. Qu, H.R. Yang, L. Zhu, H. Zhou, J.F. Liu, J.F. Long, L.Q. Shi, Self-assembly molecular chaperone to concurrently inhibit the production and aggregation of amyloid β peptide associated with Alzheimer's disease, ACS Macro Lett. 7 (8) (2018) 983–989. [11] E. Stefaniak, E. Atrian-Blasco, W. Goch, L. Sabater, C. Hureau, W. Bal, The aggregation pattern of aβ 1–40 is altered by the presence of N-truncated aβ4–40 and/or Cu II in a similar way through ionic interactions, Chem. Eur. J. 27 (8) (2021) 2798–2809. [12] D.Q. Yu, Y.J. Guan, F.Q. Bai, Z. Du, N. Gao, J.S. Ren, X.G. Qu, Metal-organic frameworks harness Cu chelating and photooxidation against amyloid β aggregation in vivo, Chem. A Eur. J. 25 (14) (2019) 3489–3495. [13] C.J. Matheou, N.D. Younan, J.H. Viles, Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption, Biochem. J. 466 (2) (2015) 233–242. [14] K. Rajasekhar, C. Madhu, T. Govindaraju, Natural tripeptide-based inhibitor of multifaceted amyloid β toxicity, ACS Chem. Neurosci. 7 (9) (2016) 1300–1310. [15] Y.Q. Zhao, Q.M. Xu, W. Xu, D.D. Wang, J. Tan, C.Q. Zhu, X.S. Tan, Probing the molecular mechanism of cerium oxide nanoparticles in protecting against the neuronal cytotoxicity of Aβ1-42 with copper ions, Metallomics 8 (7) (2016) 644–647. [16] Z.K. Mathys, A.R. White, Copper and Alzheimer's disease, Adv. Neurobiol. 18 (2017) 199–216. [17] M.Y. Dong, H.Y. Li, D.K. Hu, W. Zhao, X.Y. Zhu, H.Q. Ai, Molecular dynamics study on the inhibition mechanisms of drugs CQ1-3 for alzheimer amyloid-β40 aggregation induced by Cu(2.), ACS Chem. Neurosci. 7 (5) (2016) 599–614. [18] F. Tahmasebinia, S. Emadi, Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron, Biometals 30 (2) (2017) 285–293. [19] L.Y. Zhu, Y.C. Han, C.Q. He, X. Huang, Y.L. Wang, Disaggregation ability of different chelating molecules on copper ion-triggered amyloid fibers, J. Phys. Chem. B 118 (31) (2014) 9298–9305. [20] R.K. Chang, X. Chen, H.J. Yu, G.Z. Tan, H.L. Wen, J.X. Huang, Z.F. Hao, Modified EDTA selectively recognized Cu2+ and its application in the disaggregation of β-amyloid-Cu (II)/Zn (II) aggregates, J. Inorg. Biochem. 203 (2020) 110929. [21] D.M. Johnstone, C. Moro, J. Stone, A.L. Benabid, J. Mitrofanis, Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer's and Parkinson's disease, Front. Neurosci. 9 (2016) 500. [22] W.Z. Pan, C.B. Dai, Y. Li, Y.M. Yin, L. Gong, J.O. Machuki, Y. Yang, S. Qiu, K.J. Guo, F.L. Gao, PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis, Biomaterials 239 (2020) 119851. [23] Y.W. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y.M. Xue, C. Lin, B. Lei, Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing, ACS Nano 14 (3) (2020) 2904–2916. [24] Y.T. Zhao, L.P. Tong, Z.B. Li, N. Yang, H.D. Fu, L. Wu, H.D. Cui, W.H. Zhou, J.H. Wang, H.Y. Wang, P.K. Chu, X.F. Yu, Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy, Chem. Mater. 29 (17) (2017) 7131–7139. [25] T.T. Yin, W.J. Xie, J. Sun, L.C. Yang, J. Liu, Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance, ACS Appl. Mater. Interfaces 8 (30) (2016) 19291–19302. [26] S. Sudhakar, P.B. Santhosh, E. Mani, Dual role of gold nanorods: inhibition and dissolution of aβ fibrils induced by near IR laser, ACS Chem. Neurosci. 8 (10) (2017) 2325–2334. [27] M. Li, X.J. Yang, J.S. Ren, K.G. Qu, X.G. Qu, Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease, Adv. Mater. 24 (13) (2012) 1722–1728. [28] M. Li, A.D. Zhao, K. Dong, W. Li, J.S. Ren, X.G. Qu, Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease, Nano Res. 8 (10) (2015) 3216–3227. [29] M. Battaglini, A. Marino, A. Carmignani, C. Tapeinos, V. Cauda, A. Ancona, N. Garino, V. Vighetto, G. la Rosa, E. Sinibaldi, G. Ciofani, Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation, ACS Appl. Mater. Interfaces 12 (32) (2020) 35782–35798. [30] S.H. Bhang, S.H. Kwon, S. Lee, G.C. Kim, A.M. Han, Y.H. Kwon, B.S. Kim, Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface, Biochem. Biophys. Res. Commun. 430 (4) (2013) 1294–1300. [31] Y. Fu, L. Yang, J.H. Zhang, J.F. Hu, G.G. Duan, X.H. Liu, Y.W. Li, Z.P. Gu, Polydopamine antibacterial materials, Mater. Horiz. 8 (6) (2021) 1618–1633. [32] X.J. Chen, L.X. Song, X.L. Li, L.Y. Zhang, L. Li, X.P. Zhang, C.G. Wang, Co-delivery of hydrophilic/hydrophobic drugs by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma theranostics, Chem. Eng. J. 389 (2020) 124416. [33] J.S. Liu, S.J. Peng, G.F. Li, Y.X. Zhao, X.Y. Meng, X.R. Yu, Z.H. Li, J.M. Chen, Polydopamine nanoparticles for deep brain ablation via near-infrared irradiation, ACS Biomater. Sci. Eng. 6 (1) (2020) 664–672. [34] P. Xue, L.H. Sun, Q. Li, L. Zhang, J.H. Guo, Z.G. Xu, Y.J. Kang, PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells, Colloids Surf. B Biointerfaces 160 (2017) 11–21. [35] C.C. Ho, S.J. Ding, Structure, properties and applications of mussel-inspired polydopamine, J. Biomed. Nanotechnol. 10 (10) (2014) 3063–3084. [36] D. Hauser, D. Septiadi, J. Turner, A. Petri-Fink, B. Rothen-Rutishauser, From bioinspired glue to medicine: polydopamine as a biomedical material, Materials (Basel) 13 (7) (2020) E1730. [37] L. Liu, Y. Chang, J. Yu, M.S. Jiang, N. Xia, Two-in-one polydopamine nanospheres for fluorescent determination of beta-amyloid oligomers and inhibition of beta-amyloid aggregation, Sens. Actuat. B Chem. 251 (2017) 359–365. [38] X.J. Yu, X. Tang, J.K. He, X. Yi, G.Y. Xu, L.L. Tian, R. Zhou, C. Zhang, K. Yang, Polydopamine nanoparticle as a multifunctional nanocarrier for combined radiophotodynamic therapy of cancer, Part. Part. Syst. Charact. 34 (2) (2017) 1600296. [39] B.J. Geng, D.W. Yang, D.Y. Pan, L. Wang, F.F. Zheng, W.W. Shen, C. Zhang, X.K. Li, NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities, Carbon 134 (2018) 153–162. [40] H. Zhang, X.Y. Dong, Y. Sun, Carnosine-LVFFARK-NH2 conjugate: a moderate chelator but potent inhibitor of Cu2+-mediated amyloid β-protein aggregation, ACS Chem. Neurosci. 9 (11) (2018) 2689–2700. [41] J.N. Yang, W. Liu, Y. Sun, X.Y. Dong, LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis, Langmuir 36 (7) (2020) 1804–1812. [42] X. Li, W.J. Wang, X.Y. Dong, Y. Sun, Conjugation of RTHLVFFARK to human lysozyme creates a potent multifunctional modulator for Cu2+-mediated amyloid β-protein aggregation and cytotoxicity, J. Mater. Chem. B 8 (11) (2020) 2256–2268. [43] Q. Liu, Z.H. Pu, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, Polydopamine nanospheres: a biopolymer-based fluorescent sensing platform for DNA detection, Sens. Actuat. B Chem. 191 (2014) 567–571. [44] Y.J. Chung, B.I. Lee, C.B. Park, Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(ii)-mediated β-amyloid aggregation, Nanoscale 11 (13) (2019) 6297–6306. [45] H. Zhang, C. Zhang, X.Y. Dong, J. Zheng, Y. Sun, Design of nonapeptide LVFFARKHH: a bifunctional agent against Cu2+-mediated amyloid β-protein aggregation and cytotoxicity, J. Mol. Recognit. 31 (6) (2018) e2697. [46] W.Q. Gao, W.J. Wang, X.Y. Dong, Y. Sun, Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting Alzheimer's β-amyloid plaques, Small 16 (43) (2020) e2002804. [47] L.G. Jia, W.P. Zhao, J.C. Sang, W.J. Wang, W. Wei, Y. Wang, F. Zhao, F.P. Lu, F.F. Liu, Inhibitory effect of a flavonoid dihydromyricetin against Aβ40 amyloidogenesis and its associated cytotoxicity, ACS Chem. Neurosci. 10 (11) (2019) 4696–4703. [48] Du Z, Gao N, Wang X, Ren J, Qu X, Near-infrared switchable fullerene-based synergy therapy for Alzheimer's disease, Small (2018) e1801852. |