中国化学工程学报 ›› 2023, Vol. 54 ›› Issue (2): 162-172.DOI: 10.1016/j.cjche.2022.04.008
• Full Length Article • 上一篇 下一篇
Jingjing Pan1, Haoran Sun1, Keyi Chen1, Yuhao Zhang1, Pengnian Shan1, Weilong Shi2,3, Feng Guo1
收稿日期:
2021-12-15
修回日期:
2022-03-06
出版日期:
2023-02-28
发布日期:
2023-05-11
通讯作者:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
基金资助:
Jingjing Pan1, Haoran Sun1, Keyi Chen1, Yuhao Zhang1, Pengnian Shan1, Weilong Shi2,3, Feng Guo1
Received:
2021-12-15
Revised:
2022-03-06
Online:
2023-02-28
Published:
2023-05-11
Contact:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
Supported by:
摘要: Photocatalysis is an environmentally friendly and energy-saving technology, which can effectively remove persistent dangerous pollutants in the water. Pitifully, optical absorption capacity and carrier separation have become major bottlenecks for marvelous photocatalytic performance of photocatalysts. Herein, to address these issue, Nanodiamonds/yolk-shell ZnFe2O4 spheres (NDs/ZFO) nanocomposites were successfully constructed via a facile two-step of solvothermal and calcination methods. The synthesized optimal NDs/ZFO-10 nanocomposite exhibits superior photocatalytic degradation activity of antibiotic under visible light, approximately 85% of the total tetracycline (TC) is degraded, and this photocatalyst shows durable cycling stability. This stems from two aspects of refinement: improvement of light absorption capacity and photo-induced charges migration and separation. In addition, the NDs/ZFO composite photocatalyst features excellent magnetic recovery capability, facilitating the recovery of photocatalyst in industry. This study opens a new chapter in the combination of NDs with magnetic materials, and deepens the understanding of the application of NDs modified composite photocatalysts.
Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance[J]. 中国化学工程学报, 2023, 54(2): 162-172.
Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172.
[1] S.M. Zainab, M. Junaid, N. Xu, R.N. Malik, Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks, Water Res. 187 (2020) 116455. [2] B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.L. Show, J.S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater. 400 (2020) 122961 [3] C.C. Wang, M.J. Cai, Y.P. Liu, F. Yang, H.Q. Zhang, J.S. Liu, S.J. Li, Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight, J. Colloid Interface Sci. 605 (2022) 727–740. [4] S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, W. Jiang, Y. Liu, L.Y. Mo, X.B. Chen, Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism, Chem. Eng. J. 415 (2021) 128991. [5] S.J. Li, C.C. Wang, M.J. Cai, F. Yang, Y.P. Liu, J.L. Chen, P. Zhang, X. Li, X.B. Chen, Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction, Chem. Eng. J. 428 (2022) 131158. [6] S.J. Li, C.C. Wang, Y.P. Liu, M.J. Cai, Y.N. Wang, H.Q. Zhang, Y. Guo, W. Zhao, Z.H. Wang, X.B. Chen, Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment, Chem. Eng. J. 429 (2022) 132519. [7] S.J. Li, J.L. Chen, S.W. Hu, H.L. Wang, W. Jiang, X.B. Chen, Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants, Chem. Eng. J. 402 (2020) 126165. [8] S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, J.L. Chen, H.W. Wang, Y. Liu, Facile preparation of a novel Bi2WO6/calcined mussel shell composite photocatalyst with enhanced photocatalytic performance, Catalysts 10 (10) (2020) 1166. [9] S.J. Li, S.W. Hu, W. Jiang, J.L. Zhang, K.B. Xu, Z.H. Wang, In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants, J. Colloid Interface Sci. 556 (2019) 335–344. [10] R. Gothwal, T. Shashidhar, Antibiotic pollution in the environment: a review, CLEAN Soil Air Water 43 (4) (2015) 479–489. [11] A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H.R. Alamri, R. Dhahri, A. Serrà, Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles, Chem. Eng. J. 427 (2022) 132006. [12] X. Gao, J. Niu, Y.F. Wang, Y. Ji, Y.L. Zhang, Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites, J. Hazard. Mater. 403 (2021) 123860. [13] H. Fang, K.L. Huang, J.N. Yu, C.C. Ding, Z.F. Wang, C. Zhao, H.Z. Yuan, Z. Wang, S. Wang, J.L. Hu, Y.B. Cui, Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment, Chemosphere 224 (2019) 202–211 [14] S. Li, J.Y. Hu, Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms, J. Hazard. Mater. 318 (2016) 134–144 [15] L. Tan, L.Y. Li, N. Ashbolt, X.L. Wang, Y.X. Cui, X. Zhu, Y. Xu, Y. Yang, D.Q. Mao, Y. Luo, Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin, Sci. Total Environ. 621 (2018) 1176–1184 [16] I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res. 47 (3) (2013) 957–995 [17] L. Rizzo, A. Fiorentino, A. Anselmo, Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains, Chemosphere 92 (2) (2013) 171–176 [18] Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges, Adv. Mater. 31 (50) (2019) 1901997. [19] Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, S. Amin, F. Guo, W.L. Shi, Y. Li, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull. 150 (2022) 111789. [20] H.R. Sun, L.J. Wang, F. Guo, Y.X. Shi, L.L. Li, Z. Xu, X. Yan, W.L. Shi, Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range, J. Alloys Compd. 900 (2022) 163410. [21] J.J. Pan, L.J. Wang, Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, F. Guo, W.L. Shi, Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics, Sep. Purif. Technol. 284 (2022) 120270. [22] W.L. Shi, C.C. Hao, Y.M. Fu, F. Guo, Y.B. Tang, X. Yan, Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots, Chem. Eng. J. 433 (2022) 133741. [23] Z. Xu, Y.X. Shi, L.L. Li, H.R. Sun, M.S. Amin, F. Guo, H.B. Wen, W.L. Shi, Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline, J. Alloys Compd. 895 (2022) 162667.http://dx.doi.org/10.1016/j.jallcom.2021.162667 [24] R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review, Adv Colloid Interface Sci 272 (2019) 102009 [25] J.J. Dang, J.R. Guo, L.P. Wang, F. Guo, W.L. Shi, Y.L. Li, W.S. Guan, Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation, J. Alloys Compd. 893 (2022) 162251. [26] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation, Mater. Today Commun. 29 (2021) 102871. [27] L.J. Li, J. Xu, J.P. Ma, Z.Y. Liu, Y.R. Li, A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution, J. Colloid Interface Sci. 552 (2019) 17–26. [28] C.Y. Lu, L.N. Gao, S.J. Yin, F. Guo, C.X. Wang, D. Li, Fabrication of p-n MoS2/BiOBr heterojunction with few-layered structure for enhanced photocatalytic activity toward tetracycline degradation, DESALINATION WATER TREATMENT 207 (2020) 341–351. [29] J.F. Guo, C.S. Yang, Z.X. Sun, Z. Yang, L.P. Wang, C.Y. Lu, Z.Y. Ma, F. Guo, Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p–n heterojunction, J. Mater. Sci. Mater. Electron. 31 (19) (2020) 16746–16758. [30] Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion, Nat. Mater. 18 (9) (2019) 985–993 [31] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223. [32] Y.X. Shi, L.L. Li, Z. Xu, H.R. Sun, F. Guo, W.L. Shi, One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline, J. Chem. Technol. Biotechnol. 96 (11) (2021) 3122–3133. [33] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770. [34] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226–2240. [35] Y.B. Xiang, Y.H. Huang, B. Xiao, X.Y. Wu, G.K. Zhang, Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study, Appl. Surf. Sci. 513 (2020) 145820. [36] Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res. 50 (12) (2011) 7210–7218. [37] J.N. Li, X.Y. Li, L.B. Zeng, S.Y. Fan, M.M. Zhang, W.B. Sun, X. Chen, M.O. Tadé, S.M. Liu, Functionalized nitrogen-doped carbon dot-modified yolk-shell ZnFe 2 O4 nanospheres with highly efficient light harvesting and superior catalytic activity, Nanoscale 11 (9) (2019) 3877–3887. [38] J.N. Li, X.Y. Li, X. Chen, Z.F. Yin, Y.X. Li, X.C. Jiang, In situ construction of yolk-shell zinc ferrite with carbon and nitrogen co-doping for highly efficient solar light harvesting and improved catalytic performance, J. Colloid Interface Sci. 554 (2019) 91–102. [39] L.R. Hou, R.Q. Bao, Y.R. Zhang, X. Sun, J.Y. Zhang, H. Dou, X.G. Zhang, C.Z. Yuan, Structure-designed synthesis of yolk–shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries, J. Mater. Chem. A 6 (37) (2018) 17947–17958. [40] N. Zhang, X.Z. Fu, Y.J. Xu, A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst, J. Mater. Chem. 21 (22) (2011) 8152. [41] L.X. Su, Z.Y. Liu, Y.L. Ye, C.L. Shen, Q. Lou, C.X. Shan, Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation, Int. J. Hydrog. Energy 44 (36) (2019) 19805–19815. [42] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663–6675. [43] Z.Y. Lin, J. Xiao, L.H. Li, P. Liu, C.X. Wang, G.W. Yang, Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution, Adv. Energy Mater. 6 (4) (2016) 1501865. [44] H.I. Kim, S. Weon, H. Kang, A.L. Hagstrom, O.S. Kwon, Y.S. Lee, W. Choi, J.H. Kim, Plasmon-enhanced sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for volatile organic compound degradation, Environ. Sci. Technol. 50 (20) (2016) 11184–11192. [45] K.D. Kim, N.K. Dey, H.O. Seo, Y.D. Kim, D.C. Lim, M. Lee, Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition, Appl. Catal. A Gen. 408 (1–2) (2011) 148–155. [46] F.M. Shakhov, A.M. Abyzov, K. Takai, Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature, J. Solid State Chem. 256 (2017) 72–92. [47] L.M. Pastrana-Martínez, S. Morales-Torres, S.A.C. Carabineiro, J.G. Buijnsters, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Nanodiamond-TiO2 composites for heterogeneous photocatalysis, ChemPlusChem 78 (8) (2013) 750. [48] W.L. Shi, F. Guo, H.B. Wang, C.G. Liu, Y.J. Fu, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution, Appl. Surf. Sci. 433 (2018) 790–797. [49] L.X. Su, Q. Lou, C.X. Shan, D.L. Chen, J.H. Zang, L.J. Liu, Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance, Appl. Surf. Sci. 525 (2020) 146576. [50] H. Liu, Y.J. Chen, H.L. Li, H.Y. Jiang, G.H. Tian, Achieving cadmium selenide-decorated zinc ferrite@titanium dioxide hollow core/shell nanospheres with improved light trapping and charge generation for photocatalytic hydrogen generation, J. Colloid Interface Sci. 575 (2020) 158–167. [51] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe 2 O4-black phosphorus 3D microcavity structure: efficient photocatalyst design in visible-near-infrared region, J. Colloid Interface Sci. 600 (2021) 463–472. [52] L. Li, Y.X. Zhang, J. Li, W. Huo, B. Li, J. Bai, Y. Cheng, H.J. Tang, X.H. Li, Facile synthesis of yolk–shell structured ZnFe2O4 microspheres for enhanced electrocatalytic oxygen evolution reaction, Inorg. Chem. Front. 6 (2) (2019) 511–520. [53] J.T. Feng, Y.C. Wang, Y.H. Hou, L.C. Li, Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption, Inorg. Chem. Front. 4 (6) (2017) 935–945. [54] K.W. Wang, S. Zhan, D.Y. Zhang, H. Sun, X.D. Jin, J. Wang, In situ grown monolayer N-Doped graphene and ZnO on ZnFe2O4 hollow spheres for efficient photocatalytic tetracycline degradation, Colloids Surf. A Physicochem. Eng. Aspects 618 (2021) 126362. [55] P.L. Liang, L.Y. Yuan, H. Deng, X.C. Wang, L. Wang, Z.J. Li, S.Z. Luo, W.Q. Shi, Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light, Appl. Catal. B Environ. 267 (2020) 118688. [56] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844. [57] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398. [58] A.Q. Mir, G. Joshi, P. Ghosh, S. Khandelwal, A. Kar, R. Hegde, S. Khatua, A. Dutta, Plasmonic gold nanoprism–cobalt molecular complex dyad mimics photosystem-II for visible–NIR illuminated neutral water oxidation, ACS Energy Letters. 4 (2019) 2428-2435. [59] A.Q. Mir, G. Joshi, P. Ghosh, S. Khandelwal, A. Kar, R. Hegde, S. Khatua, A. Dutta, Plasmonic gold nanoprism–cobalt molecular complex dyad mimics photosystem-II for visible–NIR illuminated neutral water oxidation, ACS Energy Lett. 4 (10) (2019) 2428–2435. [60] H. Zhao, P.P. Jiang, W. Cai, Graphitic C3N4 decorated with CoP co-catalyst: enhanced and stable photocatalytic H2 evolution activity from water under visible-light irradiation, Chem. Asian J. 12 (3) (2017) 361–365. [61] G.D. Fan, X. Lin, Y.F. You, B.H. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism, J. Hazard. Mater. 421 (2022) 126703. [62] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118. [63] F. Guo, H.R. Sun, X.L. Huang, W.L. Shi, C. Yan, Fabrication of TiO 2/high-crystalline g-C 3 N 4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J. Chem. Technol. Biotechnol. (2020) jctb.6384. [64] C. Wang, Y. Xue, P.F. Wang, Y.H. Ao, Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation, J. Alloys Compd. 748 (2018) 314–322. [65] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, C. Yan, Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline, J. Alloys Compd. 818 (2020) 152883. [66] W.L. Shi, C. Liu, M.Y. Li, X. Lin, F. Guo, J.Y. Shi, Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity, J. Hazard. Mater. 389 (2020) 121907. [67] F. Guo, X.L. Huang, Z.H. Chen, H.J. Ren, M.Y. Li, L.Z. Chen, MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight, J. Hazard. Mater. 390 (2020) 122158. [68] W.L. Shi, K.K. Shu, H.R. Sun, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 246 (2020) 116930. [69] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366–4379. [70] F. Deng, L.N. Zhao, X.B. Luo, S.L. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater, Chem. Eng. J. 333 (2018) 423–433. [71] Y. Yang, Z.T. Zeng, C. Zhang, D.L. Huang, G.M. Zeng, R. Xiao, C. Lai, C.Y. Zhou, H. Guo, W.J. Xue, M. Cheng, W.J. Wang, J.J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight, Chem. Eng. J. 349 (2018) 808–821. [72] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876. [73] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518. [74] J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment, Chemosphere 93 (1) (2013) 1–8. [75] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215–11223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||