中国化学工程学报 ›› 2023, Vol. 55 ›› Issue (3): 277-292.DOI: 10.1016/j.cjche.2022.05.009
Mustapha Omenesa Idris1,2, Claudia Guerrero-Barajas3, Hyun-Chul Kim4, Asim Ali Yaqoob1,4, Mohamad Nasir Mohamad Ibrahim1
收稿日期:
2022-01-05
修回日期:
2022-04-26
出版日期:
2023-03-28
发布日期:
2023-06-03
通讯作者:
Asim Ali Yaqoob,E-mail:asimchem4@gmail.com;Mohamad Nasir Mohamad Ibrahim,E-mail:mnm@usm.my
基金资助:
Mustapha Omenesa Idris1,2, Claudia Guerrero-Barajas3, Hyun-Chul Kim4, Asim Ali Yaqoob1,4, Mohamad Nasir Mohamad Ibrahim1
Received:
2022-01-05
Revised:
2022-04-26
Online:
2023-03-28
Published:
2023-06-03
Contact:
Asim Ali Yaqoob,E-mail:asimchem4@gmail.com;Mohamad Nasir Mohamad Ibrahim,E-mail:mnm@usm.my
Supported by:
摘要: Microbial fuel cell (MFC) is an advanced bioelectrochemical technique that can utilize biomass materials in the process of simultaneously generating electricity and biodegrading or bio transforming toxic pollutants from wastewater. The overall performance of the system is largely dependent on the efficiency of the anode electrode to enhance electron transportation. Furthermore, the anode electrode has a significant impact on the overall cost of MFC setup. Hence, the need to explore research focused towards developing cost-effective material as anode in MFC. This material must also have favourable properties for electron transportation. Graphene oxide (GO) derivatives and its modification with nanomaterials have been identified as a viable anode material. Herein, we discussed an economically effective strategy for the synthesis of graphene derivatives from waste biomass materials and its subsequent fabrication into anode electrode for MFC applications. This review article offers a promising approach towards replacing commercial graphene materials with biomass-derived graphene derivatives in a view to achieve a sustainable and commercialized MFC.
Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review[J]. 中国化学工程学报, 2023, 55(3): 277-292.
Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292.
[1] P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Eng. 3 (1) (2016) 1167990. 10.1080/23311916.2016.1167990 [2] A.A. Yaqoob, M.N.M. Ibrahim, S. Rodríguez-Couto, Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs):An overview, Biochem. Eng. J. 164 (2020) 107779. 10.1016/j.bej.2020.107779 [3] V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 73 (2013) 53-64. 10.1016/j.bej.2013.01.012 [4] A.A. Yaqoob, A. Khatoon, S.H. Mohd Setapar, K. Umar, T. Parveen, M.N. Mohamad Ibrahim, A. Ahmad, M. Rafatullah, Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation, Catalysts 10 (8) (2020) 819.https://doi.org/10.3390/catal10080819 [5] U. Schröder, A basic introduction into microbial fuel cells and microbial electrocatalysis, ChemTexts 4 (4) (2018) 1-6. 10.1007/s40828-018-0072-1 [6] R. Valladares Linares, J. Domínguez-Maldonado, E. Rodríguez-Leal, G. Patrón, A. Castillo-Hernández, A. Miranda, D.D. Romero, R. Moreno-Cervera, G. Camara-Chale, C.G. Borroto, L. Alzate-Gaviria, Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation, Water 11 (2) (2019) 217.https://doi.org/10.3390/w11020217 [7] K. Parvez, S.B. Yang, Y. Hernandez, A. Winter, A. Turchanin, X.L. Feng, K. Müllen, Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction, ACS Nano 6 (11) (2012) 9541-9550.https://doi.org/10.1021/nn302674k [8] A.A. Yaqoob, M.N.M. Ibrahim, A.S. Yaakop, K. Umar, A. Ahmad, Modified graphene oxide anode:A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells, Chem. Eng. J. 417 (2021) 128052. 10.1016/j.cej.2020.128052 [9] F. Yu, C.X. Wang, J. Ma, Applications of graphene-modified electrodes in microbial fuel cells, Materials (Basel) 9 (10) (2016) 807.https://pubmed.ncbi.nlm.nih.gov/28773929/ [10] T. Tomai, Y. Nakayasu, Y. Okamura, S. Ishiguro, N. Tamura, S. Katahira, I. Honma, Bottom-up synthesis of graphene via hydrothermal cathodic reduction, Carbon 158 (2020) 131-136. 10.1016/j.carbon.2019.11.052 [11] Y.X. Wu, S.X. Wang, K. Komvopoulos, A review of graphene synthesis by indirect and direct deposition methods, J. Mater. Res. 35 (1) (2020) 76-89.https://doi.org/10.1557/jmr.2019.377 [12] B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater. 22 (7) (2010) 813-828.https://pubmed.ncbi.nlm.nih.gov/20217791/ [13] R. Kaur, A. Marwaha, V.A. Chhabra, K.H. Kim, S.K. Tripathi, Recent developments on functional nanomaterial-based electrodes for microbial fuel cells, Renew. Sustain. Energy Rev. 119 (2020) 109551. 10.1016/j.rser.2019.109551 [14] M. Mashkour, M. Rahimnejad, F. Raouf, N. Navidjouy, A review on the application of nanomaterials in improving microbial fuel cells, Biofuel Res. J. 8 (2) (2021) 1400-1416.https://doi.org/10.18331/brj2021.8.2.5 [15] Y.F. Liu, X.L. Zhang, Q.C. Zhang, C.J. Li, Microbial fuel cells:Nanomaterials based on anode and their application, Energy Technol. 8 (9) (2020) 2000206. 10.1002/ente.202000206 [16] A.A. Yaqoob, M.N. Mohamad Ibrahim, S. Rodríguez-Couto, A. Ahmad, Preparation, characterization, and application of modified carbonized lignin as an anode for sustainable microbial fuel cell, Process. Saf. Environ. Prot. 155 (2021) 49-60. 10.1016/j.psep.2021.09.006 [17] A. Ahmad, MB. Alshammari, M.N.M. Ibrahim, Impact of self-fabricated graphene-metal oxide composite anodes on metal degradation and energy generation via a microbial fuel cell Process 1 (2023) 163-182. [18] S. Kalathil, V.H. Nguyen, J.J. Shim, M.M. Khan, J. Lee, M.H. Cho, Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material, J. Nanosci. Nanotech. 13 (11) (2013) 7712-7716.https://doi.org/10.1166/jnn.2013.7832 [19] C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells:From fundamentals to applications. A review, J. Power Sources 356 (2017) 225-244. 10.1016/j.jpowsour.2017.03.109 [20] I.S. Chang, J.K. Jang, G.C. Gil, M. Kim, H.J. Kim, B.W. Cho, B.H. Kim, Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor, Biosens. Bioelectron. 19 (6) (2004) 607-613.https://pubmed.ncbi.nlm.nih.gov/14683644/ [21] A. Nawaz, A. Hafeez, S.Z. Abbas, I.U. Haq, H. Mukhtar, M. Rafatullah, A state of the art review on electron transfer mechanisms, characteristics, applications and recent advancements in microbial fuel cells technology, Green Chem. Lett. Rev. 13 (4) (2020) 365-381. 10.1080/17518253.2020.1854871 [22] F.S. Fadzli, M. Rashid, A.A. Yaqoob, M.N. Mohamad Ibrahim, Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs), Biochem. Eng. J. 172 (2021) 108067. 10.1016/j.bej.2021.108067 [23] M.O. Idris, H.C. Kim, A.A. Yaqoob, M.N.M. Ibrahim, Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation, Sustain. Energy Technol. Assess. 52 (2022) 102183. 10.1016/j.seta.2022.102183 [24] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells:Methodology and technology, Environ. Sci. Technol. 40 (17) (2006) 5181-5192.https://doi.org/10.1021/es0605016 [25] J.C. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour. Technol. 102 (20) (2011) 9335-9344.https://pubmed.ncbi.nlm.nih.gov/21855328/ [26] E. Griškonis, A. Ilginis, I. Jonuškienė, L. Raslavičius, R. Jonynas, K. Kantminienė, Enhanced performance of microbial fuel cells with anodes from ethylenediamine and phenylenediamine modified graphite felt, Processes 8 (8) (2020) 939.https://doi.org/10.3390/pr8080939 [27] K. Scott, G.A. Rimbu, K.P. Katuri, K.K. Prasad, I.M. Head, Application of modified carbon anodes in microbial fuel cells, Process. Saf. Environ. Prot. 85 (5) (2007) 481-488. 10.1205/psep07018 [28] N.N.M. Daud, A. Ahmad, A.A. Yaqoob, M.N.M. Ibrahim, Application of rotten rice as a substrate for bacterial species to generate energy and the removal of toxic metals from wastewater through microbial fuel cells, Environ. Sci. Pollut. Res. 28 (44) (2021) 62816-62827. 10.1007/s11356-021-15104-w [29] Y. Hindatu, M.S.M. Annuar, A.M. Gumel, Mini-review:Anode modification for improved performance of microbial fuel cell, Renew. Sustain. Energy Rev. 73 (2017) 236-248. 10.1016/j.rser.2017.01.138 [30] Ramaraja P Ramasamy Narendran Sekar. Electrochemical impedance spectroscopy for microbial fuel cell characterization, J. Microb. Biochem. Technol. S6 (2013):1-14.https://doi.org/10.4172/1948-5948.s6-004 [31] C.S. Song, Fuel processing for low-temperature and high-temperature fuel cells:Challenges, and opportunities for sustainable development in the 21st century, Catal. Today 77 (1-2) (2002) 17-49. 10.1016/S0920-5861(02)00231-6 [32] Y. Wang, B. Seo, B.W. Wang, N. Zamel, K. Jiao, X.C. Adroher, Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology, Energy AI 1 (2020) 100014. 10.1016/j.egyai.2020.100014 [33] M. Ozdemir, V. Enisoglu-Atalay, H. Bermek, S. Ozilhan, N. Tarhan, T. Catal, Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity, Bioresour. Technol. Rep. 5 (2019) 121-126. 10.1016/j.biteb.2019.01.003 [34] C. Liedel, Sustainable battery materials from biomass, ChemSusChem 13 (9) (2020) 2110-2141. [35] J. Górka, C. Vix-Guterl, C. Matei Ghimbeu, Recent progress in design of biomass-derived hard carbons for sodium ion batteries, C 2 (4) (2016) 24.https://doi.org/10.3390/c2040024 [36] L.M. Wu, D. Buchholz, C. Vaalma, G.A. Giffin, S. Passerini, Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries, ChemElectroChem 3 (2) (2016) 292-298.https://doi.org/10.1002/celc.201500437 [37] Y.M. Li, Y.S. Hu, H. Li, L.Q. Chen, X.J. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, J. Mater. Chem. A 4 (1) (2016) 96-104.https://doi.org/10.1039/c5ta08601a [38] Y.H. Hung, T.Y. Liu, H.Y. Chen, Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells, ACS Sustain. Chem. Eng. 7 (20) (2019) 16991-16999. 10.1021/acssuschemeng.9b02405 [39] W. Chen, H.J. Feng, D.S. Shen, Y.F. Jia, N. Li, X.B. Ying, T. Chen, Y.Y. Zhou, J.Y. Guo, M.J. Zhou, Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells, Sci. Total. Environ. 618 (2018) 804-809. 10.1016/j.scitotenv.2017.08.201 [40] A.A. Yaqoob, A. Serrà, M.N.M. Ibrahim, A.S. Yaakop, Self-assembled oil palm biomass-derived modified graphene oxide anode:An efficient medium for energy transportation and bioremediating Cd (II) via microbial fuel cells, Arab. J. Chem. 14 (5) (2021) 103121. 10.1016/j.arabjc.2021.103121 [41] A.A. Yaqoob, M.N. Mohamad Ibrahim, K. Umar, S.A. Bhawani, A. Khan, A.M. Asiri, M.R. Khan, M. Azam, A.M. AlAmmari, Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells, Polymers 13 (1) (2020) 135.https://doi.org/10.3390/polym13010135 [42] F. Offei, A. Thygesen, M. Mensah, K. Tabbicca, D. Fernando, I. Petrushina, G. Daniel, A viable electrode material for use in microbial fuel cells for tropical regions, Energies 9 (1) (2016) 35.https://doi.org/10.3390/en9010035 [43] R. Karthikeyan, B. Wang, J. Xuan, J.W.C. Wong, P.K.H. Lee, M.K.H. Leung, Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell, Electrochimica Acta 157 (2015) 314-323. 10.1016/j.electacta.2015.01.029 [44] Y.F. Jia, H.J. Feng, D.S. Shen, Y.Y. Zhou, T. Chen, M.Z. Wang, W. Chen, Z.P. Ge, L.J. Huang, S.T. Zheng, High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash, J. Hazard. Mater. 354 (2018) 27-32.https://pubmed.ncbi.nlm.nih.gov/29723760/ [45] X.X. Ma, C.H. Feng, W.J. Zhou, H. Yu, Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells, J. Power Sources 307 (2016) 105-111. 10.1016/j.jpowsour.2015.12.109 [46] M. Li, Y.W. Li, X.L. Yu, J.J. Guo, L. Xiang, B.L. Liu, H.M. Zhao, M.Y. Xu, N.X. Feng, P.F. Yu, Q.Y. Cai, C.H. Mo, Improved bio-electricity production in bio-electrochemical reactor for wastewater treatment using biomass carbon derived from sludge supported carbon felt anode, Sci. Total. Environ. 726 (2020) 138573. 10.1016/j.scitotenv.2020.138573 [47] M. Li, Y.W. Li, Q.Y. Cai, S.Q. Zhou, C.H. Mo, Spraying carbon powder derived from mango wood biomass as high-performance anode in bio-electrochemical system, Bioresour. Technol. 300 (2020) 122623. 10.1016/j.biortech.2019.122623 [48] D.N. Li, L.F. Deng, H.R. Yuan, G. Dong, J. Chen, X. Zhang, Y. Chen, Y. Yuan, N, P-doped mesoporous carbon from onion as trifunctional metal-free electrode modifier for enhanced power performance and capacitive manner of microbial fuel cells, Electrochimica Acta 262 (2018) 297-305. 10.1016/j.electacta.2017.12.164 [49] T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z.J. Ren, Biochar as a sustainable electrode material for electricity production in microbial fuel cells, Bioresour. Technol. 157 (2014) 114-119.https://pubmed.ncbi.nlm.nih.gov/24534792/ [50] S.S. Chen, J.H. Tang, X.Y. Jing, Y. Liu, Y. Yuan, S.G. Zhou, A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting, Electrochimica Acta 212 (2016) 883-889. 10.1016/j.electacta.2016.07.077 [51] J.H. Tang, S.S. Chen, Y. Yuan, X.X. Cai, S.G. Zhou, In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells, Biosens. Bioelectron. 71 (2015) 387-395.https://pubmed.ncbi.nlm.nih.gov/25950933/ [52] F.W. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth:A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity, Angewandte Chemie Int. Ed. 56 (2) (2017) 505-509. 10.1002/anie.201608279 [53] Y. Yuan, T. Liu, P. Fu, J.H. Tang, S.G. Zhou, Conversion of sewage sludge into high-performance bifunctional electrode materials for microbial energy harvesting, J. Mater. Chem. A 3 (16) (2015) 8475-8482.https://doi.org/10.1039/c5ta00458f [54] J. Zhang, J. Li, D.D. Ye, X. Zhu, Q. Liao, B. Zhang, Tubular bamboo charcoal for anode in microbial fuel cells, J. Power Sources 272 (2014) 277-282. 10.1016/j.jpowsour.2014.08.115 [55] G. Stella Mary, P. Sugumaran, S. Niveditha, B. Ramalakshmi, P. Ravichandran, S. Seshadri, Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes, Int. J. Recycl. Org. Waste Agric. 5 (1) (2016) 43-53. 10.1007/s40093-016-0116-8 [56] M.Z. Li, S.Q. Ci, Y.C. Ding, Z.H. Wen, Almond shell derived porous carbon for a high-performance anode of microbial fuel cells, Sustain. Energy Fuels 3 (12) (2019) 3415-3421.https://doi.org/10.1039/c9se00659a [57] J.M. Sonawane, A. Yadav, P.C. Ghosh, S.B. Adeloju, Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells, Biosens. Bioelectron. 90 (2017) 558-576.https://pubmed.ncbi.nlm.nih.gov/27825877/ [58] H. Lam, W. Ng, F. Ng, M. Kamal, J. Lim, Green potential from palm biomass in Malaysia, Chem Eng Transact. 29 (2012) 865-870. [59] W.P.Q. Ng, H.L. Lam, F.Y. Ng, M. Kamal, J.H.E. Lim, Waste-to-wealth:Green potential from palm biomass in Malaysia, J. Clean. Prod. 34 (2012) 57-65. 10.1016/j.jclepro.2012.04.004 [60] T.M. Huggins, A. Haeger, J.C. Biffinger, Z.J. Ren, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, Water Res. 94 (2016) 225-232.https://pubmed.ncbi.nlm.nih.gov/26954576/ [61] I. Chakraborty, S.M. Sathe, B.K. Dubey, M.M. Ghangrekar, Waste-derived biochar:Applications and future perspective in microbial fuel cells, Bioresour. Technol. 312 (2020) 123587.https://pubmed.ncbi.nlm.nih.gov/32480350/ [62] M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water:A review, Chemosphere 99 (2014) 19-33.https://pubmed.ncbi.nlm.nih.gov/24289982/ [63] B.L. Liang, K.X. Li, Y. Liu, X.W. Kang, Nitrogen and phosphorus dual-doped carbon derived from chitosan:An excellent cathode catalyst in microbial fuel cell, Chem. Eng. J. 358 (2019) 1002-1011. 10.1016/j.cej.2018.09.217 [64] M. Li, H.G. Zhang, T.F. Xiao, S.D. Wang, B.P. Zhang, D.Y. Chen, M.H. Su, J.F. Tang, Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells, Electrochimica Acta 283 (2018) 780-788. 10.1016/j.electacta.2018.07.010 [65] B.W. Wang, Z.F. Wang, Y. Jiang, G.C. Tan, N. Xu, Y. Xu, Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system, Bioresour. Technol. 241 (2017) 841-848. 10.1016/j.biortech.2017.05.155 [66] Y. Liu, J.R. Chen, B. Cui, P.F. Yin, C. Zhang, Design and preparation of biomass-derived carbon materials for supercapacitors:A review, C 4 (4) (2018) 53.https://doi.org/10.3390/c4040053 [67] A.A. Yaqoob, M.N.M. Ibrahim, A.S. Yaakop, M. Rafatullah, Utilization of biomass-derived electrodes:A journey toward the high performance of microbial fuel cells, Appl. Water Sci. 12 (5) (2022) 1-20. 10.1007/s13201-022-01632-4 [68] Y. Fang, B. Luo, Y.Y. Jia, X.L. Li, B. Wang, Q. Song, F.Y. Kang, L.J. Zhi, Renewing functionalized graphene as electrodes for high-performance supercapacitors, Adv. Mater. 24 (47) (2012) 6348-6355.https://doi.org/10.1002/adma.201202774 [69] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems, Acc. Chem. Res. 46 (5) (2013) 1094-1103.https://pubmed.ncbi.nlm.nih.gov/22670843/ [70] C.L. Long, X. Chen, L.L. Jiang, L.J. Zhi, Z.J. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors, Nano Energy 12 (2015) 141-151. 10.1016/j.nanoen.2014.12.014 [71] M. Lanzetta, C. di Blasi, Pyrolysis kinetics of wheat and corn straw, J. Anal. Appl. Pyrolysis 44 (2) (1998) 181-192. 10.1016/S0165-2370(97)00079-X [72] P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes:A case study of Acid Yellow 36, Dyes Pigments 56 (3) (2003) 239-249. 10.1016/S0143-7208(02)00159-6 [73] N. Yalçın, V. Sevinç, Studies of the surface area and porosity of activated carbons prepared from rice husks, Carbon 38 (14) (2000) 1943-1945. 10.1016/S0008-6223(00)00029-4 [74] D. Savova, E. Apak, E. Ekinci, F. Yardim, N. Petrov, T. Budinova, M. Razvigorova, V. Minkova, Biomass conversion to carbon adsorbents and gas, Biomass Bioenergy 21 (2) (2001) 133-142. 10.1016/S0961-9534(01)00027-7 [75] H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Gasification of biomass chars in steam-nitrogen mixture, Energy Convers. Manag. 47 (7-8) (2006) 1004-1013. 10.1016/j.enconman.2005.06.003 [76] A.E. Pütün, N. Özbay, E.P. Önal, E. Pütün, Fixed-bed pyrolysis of cotton stalk for liquid and solid products, Fuel Process. Technol. 86 (11) (2005) 1207-1219. 10.1016/j.fuproc.2004.12.006 [77] Q. Wang, Q. Cao, X.Y. Wang, B. Jing, H. Kuang, L. Zhou, A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors, J. Power Sources 225 (2013) 101-107. 10.1016/j.jpowsour.2012.10.022 [78] A. Kanwal, A.A. Yaqoob, A. Siddique, S.A. Bhawani, M.N.M. Ibrahim, K. Umar, Hybrid Nanocomposites Based on Graphene and Its Derivatives:From Preparation to ApplicationsGraphene Nanoparticles Hybrid Nanocomposites 28 (2021):261-281. 10.1007/978-981-33-4988-9_10 [79] F. Chen, J. Yang, T. Bai, B. Long, X.Y. Zhou, Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries, J. Electroanal. Chem. 768 (2016) 18-26. 10.1016/j.jelechem.2016.02.035 [80] F.Q. Guo, X.P. Jia, S. Liang, N. Zhou, P. Chen, R. Ruan, Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification, Bioresour. Technol. 298 (2020) 122263. 10.1016/j.biortech.2019.122263 [81] D.G. Thomas, E. Kavak, N. Hashemi, R. Montazami, N. Hashemi, Synthesis of graphene nanosheets through spontaneous sodiation process, C 4 (3) (2018) 42.https://doi.org/10.3390/c4030042 [82] L.L. Liu, M.Q. Qing, Y.B. Wang, S.M. Chen, Defects in graphene:Generation, healing, and their effects on the properties of graphene:A review, J. Mater. Sci. Technol. 31 (6) (2015) 599-606. 10.1016/j.jmst.2014.11.019 [83] J. Debbarma, M.J.P. Naik, M. Saha, From agrowaste to graphene nanosheets:Chemistry and synthesis, Fuller. Nanotub. Carbon Nanostructures 27 (6) (2019) 482-485. 10.1080/1536383X.2019.1601086 [84] S. Jung, Y. Myung, B.N. Kim, I.G. Kim, I.K. You, T. Kim, Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density, Sci. Rep. 8 (2018) 1915.https://www.nature.com/articles/s41598-018-20096-8 [85] S. Sharma, S.E. Chun, New high-yield method for the production of activated carbon via hydrothermal carbonization (HTC) processing of carbohydrates, J. Electrochem. Sci. Technol 10 (4) (2019) 387-393.https://doi.org/10.33961/jecst.2019.00059 [86] M.T.U. Safian, U.S. Haron, M.N. Mohamad Ibrahim, A review on bio-based graphene derived from biomass wastes, BioResources 15 (4) (2020) 9756-9785.https://doi.org/10.15376/biores.15.4.safian [87] S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors, Adv. Energy Mater. 8 (11) (2018) 1702545.https://doi.org/10.1002/aenm.201702545 [88] S.S. Shams, L.S. Zhang, R.H. Hu, R.Y. Zhang, J. Zhu, Synthesis of graphene from biomass:A green chemistry approach, Mater. Lett. 161 (2015) 476-479. 10.1016/j.matlet.2015.09.022 [89] W.Y. Wu, M.J. Liu, Y. Gu, B. Guo, H.X. Ma, P. Wang, X.Y. Wang, R.J. Zhang, Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process, Chem. Eng. J. 381 (2020) 122592. 10.1016/j.cej.2019.122592 [90] S.P. Lonkar, Y.S. Deshmukh, A.A. Abdala, Recent advances in chemical modifications of graphene, Nano Res. 8 (4) (2015) 1039-1074. 10.1007/s12274-014-0622-9 [91] M.A. Seitzhanova, Z.A. Mansurov, M. Yeleuov, V. Roviello, R. di Capua, The characteristics of graphene obtained from rice husk and graphite, Eurasian Chem. Tech. J. 21 (2) (2019) 149.https://doi.org/10.18321/ectj825 [92] J. Chen, B.W. Yao, C. Li, G.Q. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64 (2013) 225-229. 10.1016/j.carbon.2013.07.055 [93] A. Ambrosi, A. Bonanni, Z. Sofer, M. Pumera, Large-scale quantification of CVD graphene surface coverage, Nanoscale 5 (6) (2013) 2379-2387.https://pubmed.ncbi.nlm.nih.gov/23396554/ [94] J.E. Mink, R.M. Qaisi, M.M. Hussain, Graphene-based flexible micrometer-sized microbial fuel cell, Energy Technol. 1 (11) (2013) 648-652.https://doi.org/10.1002/ente.201300085 [95] M.P. Lavin-Lopez, J.L. Valverde, A. Garrido, L. Sanchez-Silva, P. Martinez, A. Romero-Izquierdo, Novel etchings to transfer CVD-grown graphene from copper to arbitrary substrates, Chem. Phys. Lett. 614 (2014) 89-94.10.1016/j.cplett.2014.09.019 [96] F. Liu, Y. Chen, J.M. Gao, Preparation and characterization of biobased graphene from kraft lignin, BioResources 12 (3) (2017):6545-6557.https://doi.org/10.15376/biores.12.3.6545-6557 [97] S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:Wrinkle formation, Adv. Mater. 21 (22) (2009) 2328-2333.https://doi.org/10.1002/adma.200803016 [98] B.H. Min, D.W. Kim, K.H. Kim, H.O. Choi, S.W. Jang, H.T. Jung, Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode, Carbon 80 (2014) 446-452. 10.1016/j.carbon.2014.08.084 [99] Y. Qiao, G.Y. Wen, X.S. Wu, L. Zou, L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells, RSC Adv. 5 (72) (2015) 58921-58927.https://doi.org/10.1039/c5ra09170e [100] Z.M. He, J. Liu, Y. Qiao, C.M. Li, T.T.Y. Tan, Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell, Nano Lett. 12 (9) (2012) 4738-4741.https://doi.org/10.1021/nl302175j [101] A. Krishnamurthy, V. Gadhamshetty, R. Mukherjee, Z. Chen, W. Ren, H.M. Cheng, N. Koratkar, Passivation of microbial corrosion using a graphene coating, Carbon 56 (2013) 45-49. 10.1016/j.carbon.2012.12.060 [102] J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresour. Technol. 114 (2012) 275-280.https://pubmed.ncbi.nlm.nih.gov/22483349/ [103] C.E. Zhao, Y. Wang, F.J. Shi, J.R. Zhang, J.J. Zhu, High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode, Chem. Commun. 49 (59) (2013) 6668.https://doi.org/10.1039/c3cc42068j [104] Y. Yuan, S.G. Zhou, B. Zhao, L. Zhuang, Y.Q. Wang, Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells, Bioresour. Technol. 116 (2012) 453-458. 10.1016/j.biortech.2012.03.118 [105] A.A. Yaqoob, M.N.M. Ibrahim, K. Umar, Biomass-derived composite anode electrode:Synthesis, characterizations, and application in microbial fuel cells (MFCs), J. Environ. Chem. Eng. 9 (5) (2021) 106111. 10.1016/j.jece.2021.106111 [106] A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla, Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111 (2012) 185-190.https://pubmed.ncbi.nlm.nih.gov/22370231/ [107] Y. Zhang, F. Zhang, G.D. Li, J.S. Chen, Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries, Mater. Lett. 61 (30) (2007) 5209-5212. 10.1016/j.matlet.2007.04.032 [108] Y. Yuan, T. Yuan, D.M. Wang, J.H. Tang, S.G. Zhou, Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell, Bioresour. Technol. 144 (2013) 115-120.https://pubmed.ncbi.nlm.nih.gov/23859987/ [109] Y.J. Hwang, S.K. Jeong, K.S. Nahm, J.S. Shin, A.M. Stephan, Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries, J. Phys. Chem. Solids 68 (2) (2007) 182-188. 10.1016/j.jpcs.2006.10.007 [110] H.L. Wang, W.H. Yu, J. Shi, N. Mao, S.G. Chen, W. Liu, Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries, Electrochimica Acta 188 (2016) 103-110.://dx.doi.org/10.1016/j.electacta.2015.12.002 [111] J. Yang, Y.F. Liu, X.M. Chen, Z.H. Hu, G.H. Zhao, Carbon electrode material with high densities of energy and power, Acta Phys. Chimica Sin. 24 (1) (2008) 13-19. 10.1016/S1872-1508(08)60002-9 [112] X.L. Sun, X.H. Wang, N. Feng, L. Qiao, X.W. Li, D.Y. He, A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries, J. Anal. Appl. Pyrolysis 100 (2013) 181-185. 10.1016/j.jaap.2012.12.016 [113] S.T. Senthilkumar, B. Senthilkumar, S. Balaji, C. Sanjeeviraja, R.K. Selvan, Preparation of activated carbon from sorghum pith and its structural and electrochemical properties, Mater. Res. Bull. 46 (3) (2011) 413-419. 10.1016/j.materresbull.2010.12.002 [114] P. Chaijak, C. Sato, M. Lertworapreecha, C. Sukkasem, P. Boonsawang, N. Paucar, Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode, Pol. J. Environ. Stud. 29 (1) (2019) 499-503.https://doi.org/10.15244/pjoes/99099 [115] Z.J. Tang, Z.X. Pei, Z.F. Wang, H.F. Li, J. Zeng, Z.H. Ruan, Y. Huang, M.S. Zhu, Q. Xue, J. Yu, C.Y. Zhi, Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction, Carbon 130 (2018) 532-543. 10.1016/j.carbon.2018.01.055 [116] K.Q. Zhong, M. Li, Y. Yang, H.G. Zhang, B.P. Zhang, J.F. Tang, J. Yan, M.H. Su, Z.Q. Yang, Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells, Appl. Energy 242 (2019) 516-525. 10.1016/j.apenergy.2019.03.050 [117] X. Li, W. Xing, S.P. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Preparation of capacitor's electrode from sunflower seed shell, Bioresour. Technol. 102 (2) (2011) 1118-1123. 10.1016/j.biortech.2010.08.110 [118] I. Chakraborty, S. Das, B.K. Dubey, M.M. Ghangrekar, Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells, Mater. Chem. Phys. 239 (2020) 122025. 10.1016/j.matchemphys.2019.122025 [119] A. Pareek, J.S. Sravan, S.V. Mohan, Fabrication of three-dimensional graphene anode for augmenting performance in microbial fuel cells, Carbon Resour. Convers. 2 (2) (2019) 134-140 10.1016/j.crcon.2019.06.003 [120] M. Masoudi, M. Rahimnejad, M. Mashkour, Fabrication of anode electrode by a novel acrylic based graphite paint on stainless steel mesh and investigating biofilm effect on electrochemical behavior of anode in a single chamber microbial fuel cell, Electrochimica Acta 344 (2020) 136168. 10.1016/j.electacta.2020.136168 [121] J.X. Hou, Z.L. Liu, S.Q. Yang, Y. Zhou, Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells, J. Power Sources 258 (2014) 204-209. 10.1016/j.jpowsour.2014.02.035 [122] C.Y. Zhang, P. Liang, X.F. Yang, Y. Jiang, Y.H. Bian, C.M. Chen, X.Y. Zhang, X. Huang, Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell, Biosens. Bioelectron. 81 (2016) 32-38.https://pubmed.ncbi.nlm.nih.gov/26918615/ [123] J.Y. Chen, P. Xie, Z.P. Zhang, Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell, Chem. Eng. J. 361 (2019) 615-624. 10.1016/j.cej.2018.12.116 [124] S.W. Zhou, M. Lin, Z.C. Zhuang, P.W. Liu, Z.L. Chen, Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell, Chemosphere 232 (2019) 396-402.https://pubmed.ncbi.nlm.nih.gov/31158634/ [125] M. Heidari, A. Dutta, B. Acharya, S. Mahmud, A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion, J. Energy Inst. 92 (6) (2019) 1779-1799. 10.1016/j.joei.2018.12.003 [126] T. Cai, L.J. Meng, G. Chen, Y. Xi, N. Jiang, J.L. Song, S.Y. Zheng, Y.B. Liu, G.Y. Zhen, M.H. Huang, Application of advanced anodes in microbial fuel cells for power generation:A review, Chemosphere 248 (2020) 125985.https://pubmed.ncbi.nlm.nih.gov/32032871/ [127] H.Y. Yuan, Z. He, Graphene-modified electrodes for enhancing the performance of microbial fuel cells, Nanoscale 7 (16) (2015) 7022-7029.https://pubmed.ncbi.nlm.nih.gov/25465393/ [128] W. Guo, Y.R. Cui, H. Song, J.H. Sun, Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal, Bioprocess Biosyst. Eng. 37 (9) (2014) 1749-1758.https://pubmed.ncbi.nlm.nih.gov/24535080/ [129] E.C. Salas, Z.Z. Sun, A. Lüttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration, ACS Nano 4 (8) (2010) 4852-4856.https://pubmed.ncbi.nlm.nih.gov/20731460/ |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[5] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[6] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves[J]. 中国化学工程学报, 2023, 59(7): 182-192. |
[7] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[9] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm[J]. 中国化学工程学报, 2023, 58(6): 244-255. |
[10] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[11] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[12] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97. |
[13] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[14] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[15] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater[J]. 中国化学工程学报, 2023, 57(5): 338-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||