[1] S. Hallegatte, J. Rogelj, M. Allen, L. Clarke, O. Edenhofer, C.B. Field, P. Friedlingstein, L. Van Kesteren, R. Knutti, K.J. Mach, M. Mastrandrea, A. Michel, J. Minx, M. Oppenheimer, G.K. Plattner, K. Riahi, M. Schaeffer, T.F. Stocker, D.P. Van Vuuren, Mapping the climate change challenge, Nat. Clim. Chang. 6 (7) (2016) 663–668. [2] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev. 39 (2014) 426–443. 10.1016/j.rser.2014.07.093 [3] R. Kotagodahetti, K. Hewage, H. Karunathilake, R. Sadiq, Evaluating carbon capturing strategies for emissions reduction in community energy systems: a life cycle thinking approach, Energy 232 (2021) 121012. 10.1016/j.energy.2021.121012 [4] J.M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem. 2 (2014) 81.https://pubmed.ncbi.nlm.nih.gov/25426488/ [5] G. Zhang, J. Liu, Y. Xu, Y. Sun, A review of CH4–CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017), Int. J. Hydrogen Energy. 43 (32) (2018) 15030–15054. [6] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem Soc Rev 43 (22) (2014) 7813–7837.https://pubmed.ncbi.nlm.nih.gov/24504089/ [7] W. Schakel, G. Oreggioni, B. Singh, A. Strømman, A. Ramírez, Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether, J. CO2 Util. 16 (2016) 138–149. 10.1016/j.jcou.2016.06.005 [8] Q.Q. Chen, D.F. Wang, Y. Gu, S. Yang, Z.Y. Tang, Y.H. Sun, Q. Wu, Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production, Energy Convers. Manag. 205 (2020) 112348. 10.1016/j.enconman.2019.112348 [9] P.F. Cao, S. Adegbite, T. Wu, Thermodynamic equilibrium analysis of CO2 reforming of methane: elimination of carbon deposition and adjustment of H2/CO ratio, Energy Procedia 105 (2017) 1864–1869. 10.1016/j.egypro.2017.03.546 [10] Z.L. Zhang, X.E. Verykios, Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts, Appl. Catal. A Gen. 138 (1) (1996) 109–133. 10.1016/0926-860X(95)00238-3 [11] J.M. Ginsburg, J. Piña, T. El Solh, H.I. de Lasa, Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models, Ind. Eng. Chem. Res. 44 (14) (2005) 4846–4854. 10.1021/ie0496333 [12] O. Muraza, A. Galadima, A review on coke management during dry reforming of methane, Int. J. Energy Res. 39 (9) (2015) 1196–1216. 10.1002/er.3295 [13] P.J. Megía, A.J. Vizcaíno, M. Ruiz-Abad, J.A. Calles, A. Carrero, Coke evolution in simulated bio-oil aqueous fraction steam reforming using Co/SBA-15, Catal. Today 367 (2021) 145–152. 10.1016/j.cattod.2020.04.069 [14] E. Rodríguez, G. Félix, J. Ancheyta, F. Trejo, Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons, Fuel 225 (2018) 118–133. 10.1016/j.fuel.2018.02.085 [15] Y.S. Zhang, X.K. Lu, R.E. Owen, G. Manos, R.Y. Xu, F.R. Wang, W.C. Maskell, P.R. Shearing, D.J.L. Brett, Fine structural changes of fluid catalytic catalysts and characterization of coke formed resulting from heavy oil devolatilization, Appl. Catal. B Environ. 263 (2020) 118329. 10.1016/j.apcatb.2019.118329 [16] S. Sokolov, E.V. Kondratenko, M.M. Pohl, U. Rodemerck, Effect of calcination conditions on time on-stream performance of Ni/La2O3-ZrO2 in low-temperature dry reforming of methane, Int. J. Hydrog. Energy 38 (36) (2013) 16121–16132. 10.1016/j.ijhydene.2013.10.013 [17] W.Y. Kim, Y.H. Lee, H. Park, Y.H. Choi, M.H. Lee, J.S. Lee, Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane, Catal. Sci. Technol. 6 (7) (2016) 2060–2064. 10.1039/c6cy00017g [18] J.S. Zhang, F.X. Li, Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Appl. Catal. B Environ. 176-177 (2015) 513–521. 10.1016/j.apcatb.2015.04.039 [19] M. Németh, G. Sáfrán, A. Horváth, F. Somodi, Hindered methane decomposition on a coke-resistant Ni-In/SiO2 dry reforming catalyst, Catal. Commun. 118 (2019) 56–59. 10.1016/j.catcom.2018.10.003 [20] J. Jeon, S. Nam, C.H. Ko, Rapid evaluation of coke resistance in catalysts for methane reforming using low steam-to-carbon ratio, Catal. Today 309 (2018) 140–146. 10.1016/j.cattod.2017.08.051 [21] F.J. Keil, C. Rieckmann, Optimization of catalytic pore structures, Hungarian J. Ind. Chem. 21 (1993) 277–286. [22] F.J. Keil, C. Rieckmann, Optimization of three-dimensional catalyst pore structures, Chem. Eng. Sci. 49 (24) (1994) 4811–4822. 10.1016/S0009-2509(05)80061-2 [23] G.H. Ye, H.Z. Wang, X.G. Zhou, F.J. Keil, M.O. Coppens, W.K. Yuan, Optimizing catalyst pore network structure in the presence of deactivation by coking, Aiche J. 65 (10) (2019): e16687. 10.1002/aic.16687 [24] G.H. Ye, H.Z. Wang, X.Z. Duan, Z.J. Sui, X.G. Zhou, M.O. Coppens, W.K. Yuan, Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation, Aiche J. 65 (1) (2019) 140–150. 10.1002/aic.16410 [25] I.V. Zenyuk, E. Medici, J. Allen, A.Z. Weber, Coupling continuum and pore-network models for polymer-electrolyte fuel cells, Int. J. Hydrog. Energy 40 (46) (2015) 16831–16845. 10.1016/j.ijhydene.2015.08.009 [26] X.L. Liu, Q.F. Zhang, G.H. Ye, J.J. Li, P. Li, X.G. Zhou, F.J. Keil, Deactivation and regeneration of Claus catalyst particles unraveled by pore network model, Chem. Eng. Sci. 211 (2020) 115305. 10.1016/j.ces.2019.115305 [27] G.H. Ye, Y.Y. Sun, X.G. Zhou, K.K. Zhu, J.H. Zhou, M.O. Coppens, Method for generating pore networks in porous particles of arbitrary shape, and its application to catalytic hydrogenation of benzene, Chem. Eng. J. 329 (2017) 56–65. 10.1016/j.cej.2017.02.036 [28] Z.M. Zhou, Z.M. Cheng, Z. Li, W.K. Yuan, Determination of effectiveness factor of a partial internal wetting catalyst from adsorption measurement, Chem. Eng. Sci. 59 (20) (2004) 4305–4311. 10.1016/j.ces.2004.06.023 [29] J.S.S. Mohammadzadeh, A. Zamaniyan, Catalyst shape as a design parameter—optimum shape for methane-steam reforming catalyst, Chem. Eng. Res. Des. 80 (4) (2002) 383–391. 10.1205/026387602317446425 [30] A. Zamaniyan, A.A. Khodadadi, Y. Mortazavi, H. Manafi, Comparative model analysis of the performance of tube fitted bulk monolithic catalyst with conventional pellet shapes for natural gas reforming, J. Ind. Eng. Chem. 17 (4) (2011) 767–776. 10.1016/j.jiec.2011.05.028 [31] J.A. Calles, A. Carrero, A.J. Vizcaíno, P.J. Megía, Agglomerated Co-Cr/SBA-15 catalysts for hydrogen production through acetic acid steam reforming, Int. J. Hydrog. Energy 45 (32) (2020) 15941–15950. 10.1016/j.ijhydene.2019.05.237 [32] N. Wakao, T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers, Chem. Eng. Sci. 33 (10) (1978) 1375–1384. 10.1016/0009-2509(78)85120-3 [33] R. Krishna, J.A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52 (6) (1997) 861–911. 10.1016/S0009-2509(96)00458-7 [34] D.F. Fairbanks, C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Ind. Eng. Chem. 42 (3) (1950) 471–475. 10.1021/ie50483a022 [35] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, New York (2000).https://www.researchgate.net/publication/305766949_the_properties_of_gases_and_liquids [36] J.T. Richardson, S.A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Appl. Catal. 61 (1) (1990) 293–309. 10.1016/S0166-9834(00)82152-1 [37] J.W. Snoeck, G.F. Froment, M. Fowles, Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth, J. Catal. 169 (1) (1997) 240–249. 10.1006/jcat.1997.1634 [38] J.W. Snoeck, G.F. Froment, M. Fowles, Steam/CO2 reforming of methane. carbon formation and gasification on catalysts with various potassium contents, Ind. Eng. Chem. Res. 41 (15) (2002) 3548–3556. 10.1021/ie010665p [39] A. Al-Futaisi, T.W. Patzek, Extension of Hoshen-Kopelman algorithm to non-lattice environments, Phys. A Stat. Mech. Appl. 321 (3–4) (2003) 665–678. 10.1016/S0378-4371(02)01586-8 [40] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Hydrogen and synthesis gas by steam- and CO2 reforming. Adv. Catal. 47 (2002) 65–139. [41] F.J. Keil, Diffusion and reaction in porous networks, Catal. Today 53 (2) (1999) 245–258. 10.1016/S0920-5861(99)00119-4 [42] T.S. Yeh, M.D. Sacks, Effect of particle size distribution on the sintering of alumina, J. Am. Ceram. Soc. 71 (12) (1988) C–484. 10.1111/j.1151-2916.1988.tb05812.x [43] L.M. Chua, T. Vazhnova, T.J. Mays, D.B. Lukyanov, S.P. Rigby, Deactivation of PtH-MFI bifunctional catalysts by coke formation during benzene alkylation with ethane, J. Catal. 271 (2) (2010) 401–412. 10.1016/j.jcat.2010.02.029 [44] G.B. Marin, J.W. Beeckman, G.F. Froment, Rigorous kinetic models for catalyst deactivation by coke deposition: application to butene dehydrogenation, J. Catal. 97 (2) (1986) 416–426. 10.1016/0021-9517(86)90013-8 [45] M.B. Gao, H. Li, M. Yang, J.B. Zhou, X.S. Yuan, P. Tian, M. Ye, Z.M. Liu, A modeling study on reaction and diffusion in MTO process over SAPO-34 zeolites, Chem. Eng. J. 377 (2019) 119668. 10.1016/j.cej.2018.08.054 [46] D.L. Li, Y. Nakagawa, K. Tomishige, Methane reforming to synthesis gas over Ni catalysts modified with noble metals, Appl. Catal. A Gen. 408 (1–2) (2011) 1–24. 10.1016/j.apcata.2011.09.018 [47] E.L.G. Oliveira, C.A. Grande, A.E. Rodrigues, Methane steam reforming in large pore catalyst, Chem. Eng. Sci. 65 (5) (2010) 1539–1550. |