[1] Z.S. Yang, J. Wang, A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction, Environ. Res. 158 (2017) 105–117. [2] Y.F. Hao, S.D. Xie, Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm, Atmos. Environ. 177 (2018) 222–233. [3] H.D. He, M. Li, W.L. Wang, Z.Y. Wang, Y. Xue, Prediction of PM2.5 concentration based on the similarity in air quality monitoring network, Build. Environ. 137 (2018) 11–17. [4] D. Galán-Madruga, A methodological framework for improving air quality monitoring network layout. Applications to environment management, J. Environ. Sci. (China) 102 (2021) 138–147. [5] M.D. Miñarro, D. Bañón, J.A. Egea, I. Costa-Gómez, A.B. Caracena, A multi-pollutant methodology to locate a single air quality monitoring station in small and medium-size urban areas, Environ. Pollut. 266 (2020) 115279. [6] C.X. Sun, V.O.K. Li, J.C.K. Lam, I. Leslie, Optimal citizen-centric sensor placement for air quality monitoring: A case study of city of Cambridge, the united kingdom, IEEE Access 747390–47400. [7] W.L. Ye, B. Zhou, Z.H. Tu, X.P. Xiao, J.W. Yan, T. Wu, F.P. Wu, C.T. Zheng, F.K. Tittel, Leakage source location based on Gaussian plume diffusion model using a near-infrared sensor, Infrared Phys. Technol. 109 (2020) 103411. [8] J.X. Cui, J.L. Lang, T. Chen, S.Y. Cheng, Y.H. Li, Emergency monitoring layout method for sudden air pollution accidents based on a dispersion model, fuzzy evaluation, and post-optimality analysis, Atmos. Environ. 222 (2020) 117124. [9] Z.H. Huang, Y. Wang, Q. Yu, W.C. Ma, Y. Zhang, L.M. Chen, Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks, Atmos. Environ. 122 (2015) 1–9. [10] Z.H. Huang, Q. Yu, W.C. Ma, L.M. Chen, Surveillance efficiency evaluation of air quality monitoring networks for air pollution episodes in industrial parks: Pollution detection and source identification, Atmos. Environ. 215 (2019) 116874. [11] K. Zoroufchi Benis, E. Fatehifar, S. Shafiei, F. Keivani Nahr, Y. Purfarhadi, Design of a sensitive air quality monitoring network using an integrated optimization approach, Stoch. Environ. Res. Risk Assess. 30 (3) (2016) 779–793. [12] M. Hutchinson, H. Oh, W.H. Chen, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors, Inf. Fusion 36 (2017) 130–148. [13] S.S. Mao, J.L. Lang, T. Chen, S.Y. Cheng, C.D. Wang, J.F. Zhang, F. Hu, Impacts of typical atmospheric dispersion schemes on source inversion, Atmos. Environ. 232 (2020) 117572. [14] B. Wang, F. Qian, Three dimensional gas dispersion modeling using cellular automata and artificial neural network in urban environment, Process. Saf. Environ. Prot. 120 (2018) 286–301. [15] C.H. Bosanquet, J.L. Pearson, The spread of smoke and gases from chimneys, Trans. Faraday Soc. 32 (1936) 1249. [16] A. Stohl, C. Forster, A. Frank, P. Seibert, G. Wotawa, Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys. 5 (9) (2005) 2461–2474. [17] K.W. Ragland, Multiple box model for dispersion of air pollutants from area sources, Atmos. Environ. 1967 7 (11) (1973) 1017–1032. [18] G. Turbelin, S. Singh, P. Ngae, P. Kumar, An optimization-based approach for source term estimations of atmospheric releases, Earth Space Sci. 5 (12) (2018) 950–963. [19] J.X. Cui, J.L. Lang, T. Chen, S.Y. Cheng, Z.Y. Shen, S.S. Mao, Investigating the impacts of atmospheric diffusion conditions on source parameter identification based on an optimized inverse modelling method, Atmos. Environ. 205 (2019) 19–29. [20] Y.D. Wang, B. Chen, Z.Q. Zhu, R.X. Wang, F.R. Chen, Y. Zhao, L.B. Zhang, A hybrid strategy on combining different optimization algorithms for hazardous gas source term estimation in field cases, Process. Saf. Environ. Prot. 138 (2020) 27–38. [21] D.L. Ma, J.Q. Deng, Z.X. Zhang, Comparison and improvements of optimization methods for gas emission source identification, Atmos. Environ. 81 (2013) 188–198. [22] S.H. Qiu, B. Chen, R.X. Wang, Z.Q. Zhu, Y. Wang, X.G. Qiu, Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization, Atmos. Environ. 178 (2018) 158–163. [23] G.C. Efthimiou, I.V. Kovalets, A. Venetsanos, S. Andronopoulos, C.D. Argyropoulos, K. Kakosimos, An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment, Atmos. Environ. 170 (2017) 118–129. [24] S. Araki, K. Iwahashi, H. Shimadera, K. Yamamoto, A. Kondo, Optimization of air monitoring networks using chemical transport model and search algorithm, Atmos. Environ. 122 (2015) 22–30. [25] J. Wang, R. Zhang, J.M. Li, Z.C. Xin, Locating unknown number of multi-point hazardous gas leaks using Principal Component Analysis and a Modified Genetic Algorithm, Atmos. Environ. 230 (2020) 117515. [26] D.L. Ma, W. Tan, Z.X. Zhang, J. Hu, Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm, J. Hazard. Mater. 325 (2017) 239–250. [27] A. De Visscher, Air Dispersion Modeling[M]. Hoboken, NJ: John Wiley & Sons, Inc, 2013. [28] Y. Mouilleau, A. Champassith, CFD simulations of atmospheric gas dispersion using the Fire Dynamics Simulator (FDS), J. Loss Prev. Process. Ind. 22 (3) (2009) 316–323. [29] G.C. Efthimiou, S. Andronopoulos, R. Tavares, J.G. Bartzis, CFD-RANS prediction of the dispersion of a hazardous airborne material released during a real accident in an industrial environment, J. Loss Prev. Process. Ind. 46 (2017) 23–36. [30] J.K. Dong, W.L. Du, B. Wang, C.X. Cao, S.K. Chen, Q.Y. Xu, Impact analysis of multi-sensor layout on the source term estimation of hazardous gas leakage, J. Loss Prev. Process. Ind. 73 (2021) 104579. |