[1] M. Anniyappan, S.H. Sonawane, S.J. Pawar, A.K. Sikder, Thermal decomposition and kinetics of 2, 4-dinitroimidazole: an insensitive high explosive, Thermochimica Acta 614 (2015) 93–99.http://dx.doi.org/10.1016/j.tca.2015.05.027 [2] A.J. Bracuti, Crystal structure of 2, 4-dinitroimidazole (24DNI), J. Chem. Crystallogr. 25 (10) (1995) 625–627.http://dx.doi.org/10.1007/BF01665967 [3] N. Zohari, M.H. Keshavarz, S.A. Seyedsadjadi, Some high nitrogen derivatives of nitrotetrazolyl-imidazole as vew high performance energetic compounds, Cent. Eur. J. Energ. Mater., 11 (2014) 349-362. [4] R.L. Simpson, C.L. Coon, M.F. Foltz, P.F. Pagoria, A new insensitive explosive that has moderate performance and is low cost: 2,4-Dinitroimidazole, Lawrence Livermore National Laboratory, UCRL-ID-119675, 1995, 1-7. [5] R. Damavarapu, K. Jayasuriya, T. Vladimiroff, S. Iyer, 2,4-Dinitroimidazole — a less sensitive explosive and propellant made by thermal rearrangement of molten 1,4-dinitroimidazole, US Pat., 19955387297A (1995). [6] W.B. Yao, X. Wang, Synthesis and purification method of 2,4-dinitroimidazole, CN Pat., 106380451A (2016). [7] J.S. Kim, S.H. Kim, J.R. Cho, E.M. Goh, Method for Preparation of 2,4-dinitroimidazole which is an intermediate for insensitive meltcastable molecular explosive, US Pat., 20110275830A (2011). [8] S. Bulusu, R. Damavarapu, J.R. Autera, R. Behrens, L.M. Minier, J. Villanueva, K. Jayasuriya, T. Axenrod, Thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole: characterization and investigation of the mechanism by mass spectrometry and isotope labeling, J. Phys. Chem., 99 (1995) 5009-5015. [9] P.B. Lian, Y. Yuan, J. Chen, L.Z. Chen, J.L. Wang, Study of the methylation reaction of 2,4-dinitroimidazole and potassium 2,4,5-trinitroimidazol-1-ide with dimethyl sulfate, Chem. Heterocycl. Compd., 56 (2020) 1010-1014. [10] J. Chen, P.B. Lian, L.Z. Chen, J.L. Wang, J. Chen, Crystal structure and thermal behaviour of imidazolium 2,4,5-trinitroimidazolate, Cent. Eur. J. Energ. Mater., 16 (2019) 547-563. [11] P.B. Lian, J. Chen, L.Z. Chen, C.Y. Zhao, J.L. Wang, F.F. Shen, Preparation of 1-methyl-2, 4, 5-trinitroimidazole from derivatives of 1-methylimidazole and its oxidation under nitration conditions, Chem. Heterocycl. Compd. 56 (1) (2020) 55–59.http://dx.doi.org/10.1007/s10593-020-02622-7 [12] K.H. Hou, C.M. Ma, Z.L. Liu, Synthesis, single crystal structure and performance of N-substituted derivatives of dinitroimidazole, New J. Chem., 37 (2013) 2837-2844. [13] K. Bhaumik, K.G. Akamanchi, 2, 4-dinitroimidazole: microwave assisted synthesis and use in synthesis of 2, 3-dihydro-6-nitroimidazo[2, 1b]oxazole analogues with antimycobacterial activity, ChemInform 35 (27) (2004) no.http://dx.doi.org/10.1002/chin.200427114 [14] K. Nagarajan, S.J. Shenoy, Nitroimidazoles: part XX. reactions of 2, 4-dinitroimidazole with 2-haloethanols, 3-chloropropionitrile & propylene oxide, Indian J. Chem., 23B (1984) 363-368.https://www.researchgate.net/publication/277859319_Nitroimidazoles_Part_XX_Reactions_of_24-dinitroimidazole_with_2-haloethanols_3-chloropropionitrile_propylene_oxide/download [15] V. Sudarsanam, K. Nagarajan, T. George, S.J. Shenoy, V.V. Iyer, A.P. Kaulgud, Nitroimidazoles: Part XI. Some halonitro- and dinitroimidazoles, Indian J. Chem., 21B (1982) 1022-1026. [16] P.H. Lv, Y. Tong, H.Y. Wang, L.P. Dang, C.H. Sun, S.P. Pang, Measurement and correlation of solubility of ε-CL-20 in solvent mixtures of (chloroform + ethyl acetate) and (m-xylene + ethyl acetate) at temperatures from 278.15 K to 313.15 K, J. Mol. Liq., 231 (2017) 192-201. [17] P.H. Lv, H.Y. Wang, Y. Tong, L.P. Dang, C.H. Sun, S.P. Pang, Measurement and correlation of the solubility of ε-CL-20 in 12 organic solvents at temperatures ranging from 278.15 to 318.15 K, J. Chem. Eng. Data, 62 (2017) 961-966. [18] L.Z. Chen, T.B. Zhang, M. Li, J. Li, D.L. Cao, Solubility of 2,2’,4,4’,6,6’-hexanitrostilbene in binary solvent of N,N-dimethylformamide and acetonitrile, J. Chem. Thermodyn., 95 (2016) 99-104. [19] L.Z. Chen, L. Song, Y.P. Gao, A.P. Zhu, D.L. Cao, Experimental determination of solubilities and supersolubilities of 2,2',4,4',6,6'-hexanitrostilbene in different organic solvents, Chin. J. Chem. Eng., 25 (2017) 809-814. [20] G.C. Lan, J.L. Wang, L.Z. Chen, H. Hou, J. Li, Y.P. Gao, Measurement and correlation of the solubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in different solvents, J. Chem. Thermodyn., 89 (2015) 264-269. [21] H. Hou, J.L. Wang, L.Z. Chen, G.C. Lan, J. Li, Experimental determination of solubility and metastable zone width of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in (acetic acid + water) systems from (298.15 K – 338.15 K), Fluid Phase Equilib., 408 (2016) 123-131. [22] L.Z. Chen, L. Song, G.C. Lan, J.L. Wang, Solubility and metastable zone width measurement of 3, 4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in ethanol + water, Chin. J. Chem. Eng. 25 (5) (2017) 646–651.http://dx.doi.org/10.1016/j.cjche.2016.08.015 [23] X.H. Zhao, J.L. Wang, L.Z. Chen, L.Y. Liu, Z.H. Han, C. Zhou, Crystallization thermodynamics of FOX-7 in three binary mixed solvents, J. Mol. Liq., 295 (2019) 111445. [24] X.H. Zhao, G.Y. Zhang, D.L. Zhang, L.Z. Chen, J.L. Wang, Solubility and thermodynamic properties of FOX-7 in four binary mixed solvents from T = 298.15 to 333.15 K, J. Mol. Liq., 322 (2021) 114876. [25] D. Li, D.L. Cao, L.Z. Chen, J.L. Wang, Z.M. Jiang, X. Ma, Solubility of dihydroxylammonium 5,5'-Bistetrazole-1,1'-diolate in (formic acid, water) and their binary solvents from 298.15 K to 333.15 K at 101.1 kPa, J. Chem. Thermodyn., 128 (2019) 10-18. [26] M. Xue, D.Z. Huang, K.X. Yang, L.Z. Chen, Z.H. Zheng, Y. Xiang, Q.W. Huang, J. Wang, Measurement, correlation of solubility and thermodynamic properties analysis of 2,4,6-trinitroresorcinol hydrate in pure and binary solvents, J. Mol. Liq., 330 (2021) 115639. [27] M. Xue, J.L. Wang, L.Z. Chen, Z.H. Zheng, Y. Xiang, Q.W. Huang, Crystallization thermodynamics of 2, 4, 6-trinitrophenol and 2, 4, 6-trinitroresorcinol·2/3H2O in different pure solvents, J. Mol. Liq. 309 (2020) 113116.http://dx.doi.org/10.1016/j.molliq.2020.113116 [28] P.B. Lian, Q. Liu, L.Z. Chen, C. Cao, J.X. Zhao, J.L. Wang, Determination and correlation solubility of 4-nitroimidazole in twelve pure solvents from 278.15 K to 323.15 K, Chin. J. Chem. Eng. 28 (10) (2020) 2634–2639.http://dx.doi.org/10.1016/j.cjche.2020.07.022 [29] P. Lian, L. Chen, D. Huang, J. Xu, Z. Xu, C. Cao, J. Zhao, J. Wang, Crystallization thermodynamics of 2,4(5)-dinitroimidazole in eleven pure solvents, Chin. J. Chem. Eng., 48 (2022) 236-243. [30] A. Jouyban, Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures, J. Pharm. Pharm. Sci. 11 (1) (2008) 32–58.https://pubmed.ncbi.nlm.nih.gov/18445363/ [31] S. Vahdati, A. Shayanfar, J. Hanaee, F. Martínez, W.E. Acree, A. Jouyban, Solubility of Carvedilol in Ethanol + Propylene Glycol Mixtures at Various Temperatures, Ind. Eng. Chem. Res., 52 (2013) 16630-16636. [32] P.B. Lian, H.P. Zhao, J.L. Wang, L.Z. Chen, Y. Xiang, Q.H. Ren, Determination and correlation solubility of m-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from 278.15 K to 313.15 K, Chin. J. Chem. Eng., 27 (2019) 1149-1158. [33] G.B. Yao, Q.C. Yao, Z.X. Xia, Z.H. Li, Solubility determination and correlation for o-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from T = (283.15-318.15) K, J. Chem. Thermodyn. 105 (2017) 179–186.http://dx.doi.org/10.1016/j.jct.2016.10.018 [34] D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow, J.E. Fairbrother, Non-linear van't Hoff solubility-temperature plots and their pharmaceutical interpretation, Int. J. Pharm. 18 (1–2) (1984) 25–38.http://dx.doi.org/10.1016/0378-5173(84)90104-2 [35] A. Apelblat, E. Manzurola, Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K, J. Chem. Thermodyn., 29 (1997) 1527-1533. |