中国化学工程学报 ›› 2023, Vol. 57 ›› Issue (5): 162-172.DOI: 10.1016/j.cjche.2022.08.021
• Full Length Article • 上一篇 下一篇
Yaqiao Liu1, Shuozhen Hu1, Xinsheng Zhang1, Shigang Sun2
收稿日期:
2022-04-26
修回日期:
2022-07-31
出版日期:
2023-05-28
发布日期:
2023-07-08
通讯作者:
Shuozhen Hu,E-mail:shuozhen.hu@ecust.edu.cn;Shigang Sun,E-mail:sgsun@xmu.edu.cn
基金资助:
Yaqiao Liu1, Shuozhen Hu1, Xinsheng Zhang1, Shigang Sun2
Received:
2022-04-26
Revised:
2022-07-31
Online:
2023-05-28
Published:
2023-07-08
Contact:
Shuozhen Hu,E-mail:shuozhen.hu@ecust.edu.cn;Shigang Sun,E-mail:sgsun@xmu.edu.cn
Supported by:
摘要: Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge. Herein, vertically oriented mesoporous α-Fe2O3 nanorods array (α-Fe2O3-NA) is directly grown on fluorine-doped tin oxide (FTO) glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater. The Ov sites on the α-Fe2O3-NA surface are the active sites for methylene blue (MB) adsorption. Electrons transfer from the adsorbed MB to Fe-O is detected. Compared with electrocatalytic and photocatalytic degradation processes, the photoelectrocatalytic (PEC) process exhibited the best degrading performance and the largest kinetic constant. Hydroxyl, superoxide free radicals, and photo-generated holes play a jointly leading role in the PEC degradation. A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis. This work demonstrates that photoelectrocatalysis by α-Fe2O3-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation. The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment.
Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. 中国化学工程学报, 2023, 57(5): 162-172.
Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172.
[1] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166-167 (2015) 603–643. http://dx.doi.org/10.1016/j.apcatb.2014.11.016 [2] J.L. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: Recent advances and perspective, Sci. Total Environ. 704 (2020) 135249. https://pubmed.ncbi.nlm.nih.gov/31837842/ [3] J. Gomes, R. Costa, R.M. Quinta-Ferreira, R.C. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Sci. Total Environ. 586 (2017) 265–283. https://pubmed.ncbi.nlm.nih.gov/28185729/ [4] M. Solis, A. Solis, H.I. Perez, N. Manjarrez, M. Flores, Microbial decolouration of azo dyes: A review, Process Biochem., 47 (2012) 1723-1748. [5] M. Hu, X.H. Wang, X.H. Wen, Y. Xia, Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis, Bioresour. Technol. 117 (2012) 72–79. https://pubmed.ncbi.nlm.nih.gov/22609716/ [6] S. Vasudevan, M.A. Oturan, Electrochemistry: As cause and cure in water pollution—an overview, Environ. Chem. Lett. 12 (1) (2014) 97–108. http://dx.doi.org/10.1007/s10311-013-0434-2 [7] A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J. 183 (2012) 1–9. http://dx.doi.org/10.1016/j.cej.2011.12.010 [8] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: Today and tomorrow. A review, Environ. Sci. Pollut. Res. Int. 21 (14) (2014) 8336–8367. https://pubmed.ncbi.nlm.nih.gov/24687788/ [9] S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q.L. Li, G. Li-Puma, X. Quan, D.L. Sedlak, T. David Waite, P. Westerhoff, J.H. Kim, The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ. Sci. Technol. 53 (6) (2019) 2937–2947. https://doi.org/10.1021/acs.est.8b05041 [10] L. Zhao, J.H. Deng, P.Z. Sun, J.S. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, Y.K. Yang, Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis, Sci. Total. Environ. 627 (2018) 1253–1263. http://dx.doi.org/10.1016/j.scitotenv.2018.02.006 [11] Ihsanullah, Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep. Purif. Technol. 209 (2019) 307–337. http://dx.doi.org/10.1016/j.seppur.2018.07.043 [12] S. Kohansal, M. Haghighi, M. Zarrabi, Intensification of Bi7O9I3 nanoparticles distribution on ZnO via ultrasound induction approach used in photocatalytic water treatment under solar light irradiation, Chem. Eng. Sci. 230 (2021) 116086. http://dx.doi.org/10.1016/j.ces.2020.116086 [13] C.G. Lee, H. Javed, D.N. Zhang, J.H. Kim, P. Westerhoff, Q.L. Li, P.J.J. Alvarez, Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants, Environ. Sci. Technol. 52 (7) (2018) 4285–4293. https://doi.org/10.1021/acs.est.7b06508 [14] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C Photochem. Rev. 31 (2017) 1–35. http://dx.doi.org/10.1016/j.jphotochemrev.2017.01.005 [15] T. Wang, C.-A. Lin, S. Xu, C.-F. Wang, C.P. Huang, Toward concurrent organics removal and potential hydrogen production in wastewater treatment: photoelectrochemical decolorization of methylene blue over hematite electrode in the presence of Mn(II), Appl. Catal. B: E, 244 (2018) 140-149. [16] G. Matafonova, V. Batoev, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review, Water Res. 132 (2018) 177–189. https://pubmed.ncbi.nlm.nih.gov/29331640/ [17] M. Poornajar, N.T. Nguyen, H.-J. Ahn, M. Büchler, N. Liu, S. Kment, R. Zboril, J.E. Yoo, P. Schmuki, Fe2O3 blocking layer produced by cyclic voltammetry leads to improved photoelectrochemical performance of hematite nanorods, Surfaces, 2 (2019) 131-144. [18] J.S. Nyarige, T.P.J. Krüger, M. Diale, Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis, Surf. Interfaces 18 (2020) 100394. http://dx.doi.org/10.1016/j.surfin.2019.100394 [19] W.R.W. Ahmad, M.H. Mamat, A.S. Zoolfakar, Z. Khusaimi, M. Rusop, A review on hematite α-Fe2O3 focusing on nanostructures, synthesis methods and applications. In: 2016 IEEE Student Conference on Research and Development (SCOReD), Kuala Kumpur, Malaysia, 2017. [20] C. Venkata Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode, J. Alloys Compd., 814 (2020) 152349. [21] H.J. Ahn, K.Y. Yoon, M.J. Kwak, J. Park, J.H. Jang, Boron doping of metal-doped hematite for reduced surface recombination in water splitting, ACS Catal. 8 (12) (2018) 11932–11939. https://doi.org/10.1021/acscatal.8b03184 [22] F. Xiao, R.Q. Guo, X. He, H. Chen, W. Fang, W.X. Li, H.L. Wang, Z.M. Sun, P. Tian, L. Zhao, Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation, Int. J. Hydrog. Energy 46 (11) (2021) 7954–7963. http://dx.doi.org/10.1016/j.ijhydene.2020.12.023 [23] B. Lei, D.D. Xu, B. Wei, T.F. Xie, C.Y. Xiao, W.L. Jin, L.L. Xu, In situ synthesis of α-Fe2O3/Fe3O4 heterojunction photoanode via fast flame annealing for enhanced charge separation and water oxidation, ACS Appl. Mater. Interfaces 13 (3) (2021) 4785–4795. https://doi.org/10.1021/acsami.0c19927 [24] D. Chen, Z.F. Liu, S.C. Zhang, Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method, Appl. Catal. B Environ. 265 (2020) 118580. http://dx.doi.org/10.1016/j.apcatb.2019.118580 [25] S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy, T.C.K. Yang, E.S.I. El-Shafey, Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media, J. Taiwan Inst. Chem. Eng. 99 (2019) 258–267. http://dx.doi.org/10.1016/j.jtice.2019.03.011 [26] R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies, ACS Nano 7 (5) (2013) 4093–4104. https://pubmed.ncbi.nlm.nih.gov/23600646/ [27] Y.H. Chen, C.C. Lin, Effect of nano-hematite morphology on photocatalytic activity, Phys. Chem. Miner. 41 (10) (2014) 727–736. http://dx.doi.org/10.1007/s00269-014-0686-9 [28] Y.G. Lin, Y.K. Hsu, Y.C. Lin, Y.C. Chen, Electrodeposited Fe2TiO5 nanostructures for photoelectrochemical oxidation of water, Electrochimica Acta 213 (2016) 898–903. http://dx.doi.org/10.1016/j.electacta.2016.07.143 [29] Y. Hanedar, U. Demir, T. Oznuluer, Electrochemical synthesis and photoelectrochemical properties of grass-like nanostructured α-Fe2O3 photoanodes for use in solar water oxidation, Superlattices Microstruct. 98 (2016) 371–378. http://dx.doi.org/10.1016/j.spmi.2016.08.041 [30] S. Balu, Y.L. Chen, R.C. Juang, T.C.K. Yang, J.C. Juan, Morphology-controlled synthesis of α-Fe2O3 nanocrystals impregnated on g-C3N4-SO3H with ultrafast charge separation for photoreduction of Cr (VI) under visible light, Environ. Pollut. 267 (2020) 115491. http://dx.doi.org/10.1016/j.envpol.2020.115491 [31] N.T. Hahn, H. Ye, D.W. Flaherty, A.J. Bard, C.B. Mullins, Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation, ACS Nano 4 (4) (2010) 1977–1986. https://doi.org/10.1021/nn100032y [32] X.S. Zhang, H.C. Li, S.J. Wang, F.R.F. Fan, A.J. Bard, Improvement of hematite as photocatalyst by doping with tantalum, J. Phys. Chem. C 118 (30) (2014) 16842–16850. https://doi.org/10.1021/jp500395a [33] C.C. Li, Z.B. Luo, T. Wang, J.L. Gong, Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting, Adv. Mater. 30 (30) (2018) e1707502. https://pubmed.ncbi.nlm.nih.gov/29750372/ [34] R.V. Morris, H.V. Lauer Jr, C.A. Lawson, E.K. Gibson Jr, G.A. Nace, C. Stewart, Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH), J. Geophys. Res. 90 (B4) (1985) 3126. https://doi.org/10.1029/jb090ib04p03126 [35] H. Choi, H. Ryu, W.J. Lee, Photoelectrochemical properties of Fe2O3 nanorods grown with an Na2SO4 additive, J. Ind. Eng. Chem. 63 (2018) 41–47. http://dx.doi.org/10.1016/j.jiec.2018.01.036 [36] I.S. Cho, H.S. Han, M. Logar, J. Park, X.L. Zheng, Solar water splitting: Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways (adv. energy mater. 4/2016), Adv. Energy Mater. 6 (4) (2016) 1501840. https://doi.org/10.1002/aenm.201670021 [37] X.L. Guo, L.L. Wang, Y.W. Tan, Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting, Nano Energy 16 (2015) 320–328. http://dx.doi.org/10.1016/j.nanoen.2015.07.005 [38] M. Vanags, A. Šutka, J. Kleperis, P. Shipkovs, Comparison of the electrochemical properties of hematite thin films prepared by spray pyrolysis and electrodeposition, Ceram. Int. 41 (7) (2015) 9024–9029. http://dx.doi.org/10.1016/j.ceramint.2015.03.272 [39] H.Q. Ma, J.B. Hwang, W.S. Chae, H.S. Chung, S.H. Choi, M.A. Mahadik, H.H. Lee, J.S. Jang, Magnetron sputtering strategy for Zr-Fe2O3 nanorod photoanode fabricated from ZrOx/β-FeOOH nanorods for photoelectrochemical water splitting, Appl. Surf. Sci. 549 (2021) 149233. http://dx.doi.org/10.1016/j.apsusc.2021.149233 [40] X.L. Yu, J.Q. Liu, W.C. Yin, T. Wang, L. Quan, Y. Ran, J.Y. Cui, L. Wang, Y.H. Zhang, Ultrathin NiMn-layered double hydroxide nanosheets coupled with α-Fe2O3 nanorod arrays for photoelectrochemical water splitting, Appl. Surf. Sci. 492 (2019) 264–271. http://dx.doi.org/10.1016/j.apsusc.2019.06.162 [41] G.D. Zhou, T. Zhao, O.M. Wang, X. Xia, J.H. Pan, Bi2Se3, Bi2Te3 quantum dots-sensitized rutile TiO2 nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation, J. Phys. Energy 3 (1) (2021) 014003. https://doi.org/10.1088/2515-7655/abc52c [42] P. Kar, P. Jain, V. Kumar, R.K. Gupta, Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination, J. Environ. Chem. Eng. 7 (1) (2019) 102843. http://dx.doi.org/10.1016/j.jece.2018.102843 [43] Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B Environ. 180 (2016) 663–673. http://dx.doi.org/10.1016/j.apcatb.2015.06.057 [44] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A 2 (3) (2014) 637–644. https://doi.org/10.1039/c3ta14052k [45] S. Sharma, S. Singh, N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting, Int. J. Hydrog. Energy 41 (46) (2016) 21088–21098. http://dx.doi.org/10.1016/j.ijhydene.2016.08.131 [46] S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight, Catal. Today 260 (2016) 126–134. http://dx.doi.org/10.1016/j.cattod.2015.06.004 [47] Y.Y. Sheng, J. Yang, F. Wang, L.C. Liu, H. Liu, C. Yan, Z.H. Guo, Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity, Appl. Surf. Sci. 465 (2019) 154–163. http://dx.doi.org/10.1016/j.apsusc.2018.09.137 [48] S. Rajendran, M.M. Khan, F. Gracia, J.Q. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite, Sci. Rep. 6 (2016) 31641. https://doi.org/10.1038/srep31641 [49] L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation, Appl. Catal. B Environ. 183 (2016) 133–141. http://dx.doi.org/10.1016/j.apcatb.2015.10.035 [50] L. Zhang, W. Yu, C. Han, J. Guo, Q.H. Zhang, H.Y. Xie, Q. Shao, Z.G. Sun, Z.H. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2Nanofibers with an enhanced photocatalytic activity, J. Electrochem. Soc. 164 (9) (2017) H651–H656. https://doi.org/10.1149/2.1531709jes [51] C.N. Tang, E.Z. Liu, J. Wan, X.Y. Hu, J. Fan, Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst, Appl. Catal. B Environ. 181 (2016) 707–715. http://dx.doi.org/10.1016/j.apcatb.2015.08.045 [52] X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4, Appl. Surf. Sci. 405 (2017) 359–371. http://dx.doi.org/10.1016/j.apsusc.2017.02.025 [53] W.X. Zou, L. Zhang, L.C. Liu, X.B. Wang, J.F. Sun, S.G. Wu, Y. Deng, C.J. Tang, F. Gao, L. Dong, Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light, Appl. Catal. B Environ. 181 (2016) 495–503. http://dx.doi.org/10.1016/j.apcatb.2015.08.017 [54] L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles, Appl. Catal. B Environ. 203 (2017) 740–752. http://dx.doi.org/10.1016/j.apcatb.2016.10.063 [55] H. Jiang, L. Liu, K. Zhao, Z. Liu, X.S. Zhang, S.Z. Hu, Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation, Electrochimica Acta 337 (2020) 135758. http://dx.doi.org/10.1016/j.electacta.2020.135758 [56] Y.N. Zhang, H. Xu, D.F. Niu, X.S. Zhang, Y.Y. Zhang, Pyridine grafted on SnO 2-loaded carbon nanotubes acting as cocatalyst for highly efficient electroreduction of CO 2, ChemSusChem 14 (13) (2021) 2769–2779. https://doi.org/10.1002/cssc.202100541 [57] C. Ma, P.F. Hou, X.P. Wang, Z. Wang, W.T. Li, P. Kang, Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction, Appl. Catal. B Environ. 250 (2019) 347–354. http://dx.doi.org/10.1016/j.apcatb.2019.03.041 [58] H. Jin, X.K. Tian, Y.L. Nie, Z.X. Zhou, C. Yang, Y. Li, L.Q. Lu, Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite, Environ. Sci. Technol. 51 (21) (2017) 12699–12706. https://doi.org/10.1021/acs.est.7b04503 [59] L. Wang, K. Marcus, X.J. Huang, Z.Q. Shen, Y. Yang, Y.P. Bi, Retraction: Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods, Small 15 (5) (2019) 1970008. https://doi.org/10.1002/smll.201704464 [60] Y.X. Zhu, J. Xu, H. Jiang, D.F. Niu, X.S. Zhang, S.Z. Hu, The effect of fluorine doping on the photocatalytic properties of hematite for water splitting, CrystEngComm 20 (41) (2018) 6430–6437. https://doi.org/10.1039/c8ce01368c [61] M.T. Nguyen, S. Piccinin, N. Seriani, R. Gebauer, Photo-oxidation of water on defective hematite(0001), ACS Catal. 5 (2) (2015) 715–721. https://doi.org/10.1021/cs5017326 [62] J. Yang, S. Hu, Y. Fang, S. Hoang, Y. Guo, Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation, ACS Catal., 9 (2019) 9751-9763. [63] G.Q. Shen, R.R. Zhang, L. Pan, F. Hou, Y.J. Zhao, Z.Y. Shen, W.B. Mi, C.X. Shi, Q.F. Wang, X.W. Zhang, J.J. Zou, Regulating the spin state of Fe III by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis, Angew. Chem. Int. Ed. 59 (6) (2020) 2313–2317. https://doi.org/10.1002/anie.201913080 [64] Z.H. Zhou, J. Liu, R. Long, L.Q. Li, L.J. Guo, O.V. Prezhdo, Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics, J. Am. Chem. Soc. 139 (19) (2017) 6707–6717. https://doi.org/10.1021/jacs.7b02121 [65] M.R. Zong, D. Song, X. Zhang, X.P. Huang, X.C. Lu, K.M. Rosso, Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light, Environ. Sci. Technol. 55 (1) (2021) 677–688. https://pubmed.ncbi.nlm.nih.gov/33351596/ [66] J.S. Hu, J. Li, J.F. Cui, W.J. An, L. Liu, Y.H. Liang, W.Q. Cui, Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis- Fenton synergy degradation of organic pollutants, J. Hazard. Mater. 384 (2020) 121399. http://dx.doi.org/10.1016/j.jhazmat.2019.121399 [67] Z.H. Wang, W.H. Ma, C.C. Chen, H.W. Ji, J.C. Zhao, Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review, Chem. Eng. J. 170 (2–3) (2011) 353–362. http://dx.doi.org/10.1016/j.cej.2010.12.002 [68] L.W. Chen, S.J. Yang, Y. Huang, B.G. Zhang, F.X. Kang, D.H. Ding, T.M. Cai, Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light, J. Hazard. Mater. 371 (2019) 566–575. http://dx.doi.org/10.1016/j.jhazmat.2019.03.038 [69] Y.C. Ling, G.M. Wang, J. Reddy, C.C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51 (17) (2012) 4074–4079. https://doi.org/10.1002/anie.201107467 [70] N. Meshram, M.A. Mahadik, I.K. Jeong, Y.S. Seo, M. Cho, J.S. Jang, Effect of tetravalent ions dopants and CoOx surface modification on hematite nanorod array for photoelectrochemical degradation of Orange-II dye, J. Taiwan Inst. Chem. Eng. 97 (2019) 305–315. http://dx.doi.org/10.1016/j.jtice.2019.02.025 [71] A. Gómez-Marín, J. Feliu, T. Edson, Reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different from H2O2, ACS Catal. 8 (9) (2018) 7931–7943. https://doi.org/10.1021/acscatal.8b01291 [72] J. Herranz, A. Garsuch, H.A. Gasteiger, Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li–air battery electrolytes, J. Phys. Chem. C 116 (36) (2012) 19084–19094. https://doi.org/10.1021/jp304277z [73] A. Guleria, R. Sharma, A. Singh, N.K. Upadhyay, P. Shandilya, Direct dual-Z-scheme PANI/Ag2O/Cu2O heterojunction with broad absorption range for photocatalytic degradation of methylene blue, J. Water Process. Eng. 43 (2021) 102305. http://dx.doi.org/10.1016/j.jwpe.2021.102305 [74] A.S. Bansode, S.E. More, E.A. Siddiqui, S. Satpute, A. Ahmad, S.V. Bhoraskar, V.L. Mathe, Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process, Chemosphere 167 (2017) 396–405. http://dx.doi.org/10.1016/j.chemosphere.2016.09.089 [75] Y.W. Qiu, X.Y. Xu, Z.B. Xu, J. Liang, Y.L. Yu, X.D. Cao, Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties, Chem. Eng. J. 389 (2020) 124471. http://dx.doi.org/10.1016/j.cej.2020.124471 [76] C. Liu, H.H. Lü, C.L. Yu, B. Ding, R.X. Ye, Y.L. Ji, B. Dai, W.M. Liu, Novel FeWO4/WO3 nanoplate with p-n heterostructure and its enhanced mechanism for organic pollutants removal under visible-light illumination, J. Environ. Chem. Eng. 8 (5) (2020) 104044. http://dx.doi.org/10.1016/j.jece.2020.104044 [77] S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: A comparison with Cr- and Ni-doped TiO2, Res. Chem. Intermed. 44 (5) (2018) 3115–3134. http://dx.doi.org/10.1007/s11164-018-3296-1 [78] D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley, S.G. Fischer-Drowos, J.H. Chen, Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: An insight into reaction intermediates, J. Environ. Chem. Eng. 6 (4) (2018) 4927–4936. http://dx.doi.org/10.1016/j.jece.2018.07.030 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||