[1] F. Ramade, Dictionnaire encyclopédique des popullations:les polluants:de l'environnement à l'homme, Ediscience International, 2000. [2] V.K. Gupta, D. Mohan, S. Sharma, M. Sharma, Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash, Sep. Sci. Technol. 35(13) (2000) 2097-2113. [3] A. Malik, Grohmann, E. (Eds.)., Environmental Protection Strategies for Sustainable Development, Springer Science & Business Media, 2011. [4] K.V. Kumar, V. Ramamurthi, S. Sivanesan, Modeling the mechanism involved during the sorption of methylene blue onto fly ash, J. Colloid Interface Sci. 284(1) (2005) 14-21. [5] P. Manoj Kumar Reddy, S. Mahammadunnisa, B. Ramaraju, B. Sreedhar, C. Subrahmanyam, Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution, Environ. Sci. Pollut. Res. 20(2013) 4111-4124. [6] C. Zhou, Q. Wu, T. Lei, I.I. Negulescu, Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels, Chem. Eng. J. 251(2014) 17-24. [7] R.F. Gomes, A.C.N. de Azevedo, A.G. Pereira, E.C. Muniz, A.R. Fajardo, F.H. Rodrigues, Fast dye removal from water by starch-based nanocomposites, J. Colloid Interface Sci. 454(2015) 200-209. [8] W.J. Tseng, R.D. Lin, BiFeO3/α-Fe2O3 core/shell composite particles for fast and selective removal of methyl orange dye in water, J. Colloid Interface Sci. 428(2014) 95-100. [9] M. Arshadi, A.R. Faraji, M. Mehravar, Dye removal from aqueous solution by cobaltnano particles decorated aluminum silicate:Kinetic, thermodynamic and mechanism studies, J. Colloid Interface Sci. 440(2015) 91-101. [10] G.Z. Kyzas, N.K. Lazaridis, Reactive and basic dyes removal by sorption onto chitosan derivatives, J. Colloid Interface Sci. 331(1) (2009) 32-39. [11] A. Aguedach, S. Brosillon, J. Morvan, E.K. Lhadi, Photocatalytic degradation of azodyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide, Appl. Catal. B Environ. 57(2005) 55-62. [12] M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi, S. Azizian, Application of activated carbon as adsorbents for efficient removal of methylene blue:Kinetics and equilibrium study, J. Ind. Eng. Chem. 20(4) (2014) 2317-2324. [13] L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media, Appl. Clay Sci. 95(2014) 25-31. [14] C. Li, H. Zhong, S. Wang, J. Xue, Z. Zhang, Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue, J. Ind. Eng. Chem. 23(2015) 344-352. [15] M.A.A. Zaini, M. Zakaria, S.M. Setapar, M.A. Che-Yunus, Sludge-adsorbents from palm oil mill effluent for methylene blue removal, J. Environ. Chem. Eng. 1(4) (2013) 1091-1098. [16] F. Bouaziz, M. Koubaa, F. Kallel, F. Chaari, D. Driss, R.E. Ghorbel, S.E. Chaabouni, Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions, Ind. Crop. Prod. 74(2015) 903-911. [17] R. Subramaniam, S.K. Ponnusamy, Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal:Optimization by response surface methodology, Water Resour. Ind. 11(2015) 64-70. [18] F. Banat, S. Al-Asheh, R. Al-Ahmad, F. Bni-Khalid, Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal, Bioresour. Technol. 98(16) (2007) 3017-3025. [19] H. Benaissa, Influence of ionic strength on methylene blue removal by sorption from synthetic aqueous solution using almond peel as a sorbent material:Experimental and modelling studies, J. Taibah Univ. Sci. 4(2010) 31-38. [20] A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, R. Hashim, Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution, J. Hazard. Mater. 170(1) (2009) 357-365. [21] D.P. Dutta, A. Mathur, J. Ramkumar, A.K. Tyagi, Sorption of dyes and Cu (ii) ions from wastewater by sonochemically synthesized MnWO4 and MnMoO4 nanostructures, RSC Adv. 4(70) (2014) 37027-37035. [22] A. Singh, D.P. Dutta, J. Ramkumar, K. Bhattacharya, A.K. Tyagi, M.H. Fulekar, Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4, RSC Adv. 3(44) (2013) 22580-22590. [23] D.P. Dutta, A. Singh, J. Ramkumar, K. Bhattacharya, A.K. Tyagi, M.H. Fulekar, Exploration of sorption properties of sonochemically synthesized BaMoO4 nanoparticles for hazardous cationic dye removal, Adv. Porous Mater. 2(4) (2014) 237-245. [24] D.P. Dutta, A. Rathore, A. Ballal, A.K. Tyagi, Selective sorption and subsequent photocatalytic degradation of cationic dyes by sonochemically synthesized nano CuWO4 and Cu3 Mo2O9, RSC Adv. 5(115) (2015) 94866-94878. [25] H. Akrout, S. Jellali, L. Bousselmi, Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust, C. R. Chim. 18(1) (2015) 110-120. [26] F.D. Ardejani, K. Badii, N.Y. Limaee, S.Z. Shafaei, A.R. Mirhabibi, Adsorption of direct red 80 dye from aqueous solution onto almond shells:Effect of pH, initial concentration and shell type, J. Hazard. Mater. 151(2) (2008) 730-737. [27] A.M. Ferro-Garcia, J. Rivera-Utrilla, J. Rodriguez-Gordillo, I. Bautista-Toledo, Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by products, Carbon 26(3) (1988) 363-373. [28] M. Kandah, Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW), Chem. Eng. J. 84(3) (2001) 543-549. [29] J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. García, Analysis and modeling of fixed bed column operations on flumequine removal onto activated carbon:pH influence and desorption studies, Chem. Eng. J. 228(2013) 102-113. [30] E.D. Woumfo, J.M. Siéwé, D. Njopwouo, A fixed-bed column for phosphate removal from aqueous solutions using an andosol-bagasse mixture, J. Environ. Manag. 151(2015) 450-460. [31] K.K. Choy, D.C. Ko, C.W. Cheung, J.F. Porter, G. McKay, Film and intraparticle mass transfer during the adsorption of metal ions onto bone char, J. Colloid Interface Sci. 271(2) (2004) 284-295. [32] C.J. Geankoplis, Transport Process and Unit Operations, PTR Prentice Hall, New York, 1993. [33] K. Naddafi, R. Nabizadeh, R. Saeedi, A.H. Mahvi, F. Vaezi, K. Yaghmaeian, A. Ghasri, S. Nazmara, Biosorption of lead (Ⅱ) and cadmium (Ⅱ) by protonated Sargassum glaucescens biomass in a continuous packed bed column, J. Hazard. Mater. 147(3) (2007) 785-791. [34] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. 1. A theoretical model for respirator cartridge service time, Am. Ind. Hyg. Assoc. J. 45(8) (1984) 509-516. [35] A. Wolborska, Adsorption on activated carbon of p-nitrophenol from aqueous solution, Water Res. 23(1) (1989) 85-91. [36] S.Y. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademien, Handlingar, Band 24(1898) 1-39. [37] G. Blanchard, M. Maunaye, G. Martin, Removal of heavy-metals from waters by means of natural zeolites, Water Res. 18(1984) 1501-1507. [38] R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng, M. Tang, Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column:Experiments and prediction of breakthrough curves, Desalination 245(1) (2009) 284-297. |