[1] A.J. Deoda, R.S. Singhal, 5'-Phosphodiesterase (5'-PDE) from germinated barley for hydrolysis of RNA to produce flavour nucleotides, Bioresour. Technol. 88 (3) (2003) 245-250. [2] M. Yoshikawa, T. Kato, T. Takenishi, Studies of phosphorylation. III. selective phosphorylation of unprotected nucleosides, Bull. Chem. Soc. Jpn. 42 (12) (1969) 3505-3508. [3] A.R. van Rompay, A. Norda, K. Lindén, M. Johansson, A. Karlsson, Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases, Mol. Pharmacol. 59 (5) (2001) 1181-1186. [4] C. Ingram-Smith, S.R. Martin, K.S. Smith, Acetate kinase: Not just a bacterial enzyme, Trends Microbiol. 14 (6) (2006) 249-253. [5] U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation, Chem. Soc. Rev. 38 (2) (2009) 453-468. [6] W.P. Jin, Z.F. Wang, D.F. Peng, W.Y. Shen, Z.Z. Zhu, S.Y. Cheng, B. Li, Q.R. Huang, Effect of linear charge density of polysaccharides on interactions with α-amylase: Self-Assembling behavior and application in enzyme immobilization, Food Chem. 331 (2020) 127320. [7] J.D. Cui, S.R. Jia, Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges, Crit. Rev. Biotechnol. 35 (1) (2015) 15-28. [8] R.C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. Fernández-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42 (15) (2013) 6290-6307. [9] J.H. Yi, M.Y. Qiu, Z.B. Zhu, X.L. Dong, E. Andrew Decker, D.J. McClements, Robust and recyclable magnetic nanobiocatalysts for extraction of anthocyanin from black rice, Food Chem. 364 (2021) 130447. [10] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: Why, what and how, Chem. Soc. Rev. 42 (15) (2013) 6223-6235. [11] S. Arana-Peña, D. Carballares, R. Morellon-Sterlling, Á. Berenguer-Murcia, A.R. Alcántara, R.C. Rodrigues, R. Fernandez-Lafuente, Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol. Adv. 51 (2021) 107584. [12] C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Adv. Synth. Catal. 353 (16) (2011) 2885-2904. [13] E. Hwang, S. Lee, Multienzymatic cascade reactions via enzyme complex by immobilization, ACS Catal, (2019) [14] S. Datta, L.R. Christena, Y.R. Rajaram, Enzyme immobilization: An overview on techniques and support materials, 3 Biotech 3 (1) (2013) 1-9. [15] A.I. Benítez-Mateos, M.L. Contente, Agarose vs. methacrylate as material supports for enzyme immobilization and continuous processing, Catalysts 11 (7) (2021) 814. [16] C. Engelmann, N. Ekambaram, J. Johannsen, O. Fellechner, T. Waluga, G. Fieg, A. Liese, P. Bubenheim, Enzyme immobilization on synthesized nanoporous silica particles and their application in a Bi-enzymatic reaction, ChemCatChem 12 (8) (2020) 2245-2252. [17] N.C. Ricardi, L.T. Arenas, E.V. Benvenutti, R. Hinrichs, E.E.E. Flores, P.F. Hertz, T.M.H. Costa, High performance biocatalyst based on β-d-galactosidase immobilized on mesoporous silica/titania/chitosan material, Food Chem 359 (2021) 129890. [18] J.D. Cui, Y.X. Feng, S.R. Jia, Silica encapsulated catalase@metal-organic framework composite: A highly stable and recyclable biocatalyst, Chem. Eng. J. 351 (2018) 506-514. [19] Y. Chen, Y. Xin, H.L. Yang, L. Zhang, Y.R. Zhang, X.L. Xia, Y.J. Tong, W. Wang, Immobilization and stabilization of cholesterol oxidase on modified sepharose particles, Int. J. Biol. Macromol. 56 (2013) 6-13. [20] P. Zucca, R. Fernandez-Lafuente, E. Sanjust, Agarose and its derivatives as supports for enzyme immobilization, Molecules 21 (11) (2016) 1577. [21] Y.A. Ramírez Tapias, C.W. Rivero, F.L. Gallego, J.M. Guisán, J.A. Trelles, Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification, Food Chem. 208 (2016) 252-257. [22] S. Hosseinkhani, R. Szittner, M. Nemat-Gorgani, E.A. Meighen, Adsorptive immobilization of bacterial luciferases on alkyl-substituted sepharose 4B, Enzyme Microb. Technol. 32 (1) (2003) 186-193. [23] Y.F. Zhang, Q. Wang, H. Hess, Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes, ACS Catal. 7 (3) (2017) 2047-2051. [24] S. Hudson, J. Cooney, B.K. Hodnett, E. Magner, Chloroperoxidase on periodic mesoporous organosilanes: Immobilization and reuse, Chem. Mater. 19 (8) (2007) 2049-2055. [25] P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms, Molecules 19 (9) (2014) 14139-14194. [26] H. Zheng, S.J. Yang, Y.C. Zheng, Y. Cui, Z. Zhang, J.Y. Zhong, J. Zhou, Electrostatic effect of functional surfaces on the activity of adsorbed enzymes: Simulations and experiments, ACS Appl. Mater. Interfaces 12 (31) (2020) 35676-35687. [27] Y. Wang, X.F. Zhang, N.Y. Han, Y.S. Wu, D.X. Wei, Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support, Int. J. Biol. Macromol. 120 (Pt A) (2018) 100-108. [28] L.L. Yu, X.Y. Dong, Y. Sun, Ion-exchange resins facilitate like-charged protein refolding: Effects of porous solid phase properties, J. Chromatogr. A 1225 (2012) 168-173. [29] C. Mateo, J.M. Bolivar, C.A. Godoy, J. Rocha-Martin, B.C. Pessela, J.A. Curiel, R. Muñoz, J.M. Guisan, G. Fernández-Lorente, Improvement of enzyme properties with a two-step immobilizaton process on novel heterofunctional supports, Biomacromolecules 11 (11) (2010) 3112-3117. [30] R. Wu, F.X. Liu, Q.H. Dong, Y.Y. Huang, Y.B. Qiu, Y.Y. Sun, E.Z. Su, Combination of adsorption and cellulose derivative membrane coating for efficient immobilization of laccase, Appl. Biochem. Biotechnol. 193 (2) (2021) 446-462. [31] L.T. Wu, S.S. Wu, Z. Xu, Y.B. Qiu, S. Li, H. Xu, Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization, Biosens. Bioelectron. 80 (2016) 59-66. [32] D.H. Zhang, Y.Q. Li, L.J. Peng, N. Chen, Lipase immobilization on magnetic microspheres via spacer arms: Effect of steric hindrance on the activity, Biotechnol. Bioprocess Eng. 19 (5) (2014) 838-843. [33] Y.T. Zhang, Y.K. Yang, W.F. Ma, J. Guo, Y. Lin, C.C. Wang, Uniform magnetic core/shell microspheres functionalized with Ni2+-iminodiacetic acid for one step purification and immobilization of his-tagged enzymes, ACS Appl. Mater. Interfaces 5 (7) (2013) 2626-2633. [34] Q. Xiao, H.F. Weng, G. Chen, A.F. Xiao, Preparation and characterization of octenyl succinic anhydride modified agarose derivative, Food Chem. 279 (2019) 30-39. [35] S.C. Liufu, H.N. Xiao, Y.P. Li, Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites, Polym. Degrad. Stab. 87 (1) (2005) 103-110. [36] C. Chao, J.D. Liu, J.T. Wang, Y.W. Zhang, B. Zhang, Y.T. Zhang, X. Xiang, R.F. Chen, Surface modification of halloysite nanotubes with dopamine for enzyme immobilization, ACS Appl. Mater. Interfaces 5 (21) (2013) 10559-10564. [37] H.S. Lee, J.S. Kim, K. Shim, J.W. Kim, K. Inouye, H. Oneda, Y.W. Kim, K.A. Cheong, H. Cha, E.J. Woo, J.H. Auh, S.J. Lee, J.W. Kim, K.H. Park, Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state, FEBS J. 273 (1) (2006) 109-121. [38] Y.F. Zhang, J. Ge, Z. Liu, Enhanced activity of immobilized or chemically modified enzymes, ACS Catal. 5 (8) (2015) 4503-4513. [39] S. Zofair, A. Arsalan, M.A. Khan, F.A. Alhumaydhi, H. Younus, Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red, Int. J. Biol. Macromol. 161 (2020) 78-87. [40] R.M. da Silva, L. Gonçalves, S. Rodrigues, Different strategies to co-immobilize dextransucrase and dextranase onto agarose based supports: Operational stability study, Int. J. Biol. Macromol. 156 (2020) 411-419. [41] J.Y. Liao, S.S. Han, X.L. Li, J. He, F. Secundo, H. Liang, Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stabilty, Int. J. Biol. Macromol. 164 (2020) 3163-3170. |