[1] M. Oschatz, M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11(1) (2018) 57-70. [2] https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html. [3] M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials, Chem. Soc. Rev. 48(10) (2019) 2783-2828. [4] Q. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, CO2 capture by solid adsorbents and their application:Current status and new trends, Energy Environ. Sci. 4(1) (2011) 42-55. [5] E.S. Sanz-Pe'rez, C.R. Murdock, S.A. Didas, C.W. Jones, Directs capture of CO2 from ambient air, Chem. Rev. 116(19) (2016) 11840-11876. [6] A. Sanna, M.R. Hall, M. Maroto-Valer, Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials, Energy Environ. Sci. 5(7) (2012) 7781-7796. [7] T.P. Bide, M.T. Styles, J. Naden, An assessment of global resources of rocks as suitable raw materials for carbon capture and storage by mineralisation, Appl. Earth Sci. 123(3) (2014) 179-195. [8] D. Nielsen, X.M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalyzed conversion of CO2 to CO with follow-up utilization to value-added chemicals, Nat. Catal. 4(1) (2018) 244-254. [9] G. Sneddon, A. Greenaway, H.H.P. Yiu, The potential applications of nanoporous materials for the adsorption separation and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4(10) (2014) 1301873. [10] G.K. Cui, J.J. Wang, S.J. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45(15) (2016) 4307-4339. [11] Y.G. Zhang, J.Y.G. Chan, Sustainable chemistry:Imidazolium salts in biomass conversion and CO2 fixation, Energy Environ. Sci. 3(4) (2010) 408-417. [12] Y. Li, L. Lin, J.H. Yu, Applications of zeolites in sustainable chemistry, Chem. 3(6) (2017) 928-949. [13] Y. Xie, T.T. Wang, X.H. Liu, K. Zou, W.Q. Deng, Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer, Nat. Commun. 4(2013) 1960. [14] X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(18) (2012) 6010-6022. [15] A. Schoedel, Z. Ji, O.M. Yaghi, The role of metal-organic frameworks in a carbonneutral energy, Nat. Energy 1(2016) 16034. [16] C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater. 2(8) (2017) 17045. [17] S.B. Wang, X.C. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction, Angew. Chem. Int. Edit. 55(7) (2016) 2308-2320. [18] B.K. Kanth, J. Lee, S.P. Pack, Carbonic anhydrase:Its biocatalytic mechanisms and functional properties for efficient CO2 capture process development, Eng. Life Sci. 13(5) (2013) 422-431. [19] T. Sharma, S. Sharma, H. Kamyab, A. Kumar, A., energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases:A review, J. Clean. Prod. 247(2020) 119-138. [20] S.S.W. Effendi, I.S. Ng, The prospective and potential of carbonic anhydrase for carbon dioxide sequestration:A critical review, Process Biochem. 87(2019) 55-65. [21] B.C. Tripp, K. Smith, J.G. Ferry, Carbonic anhydrase:New insights for an ancient enzyme, J. Biol. Chem. 276(52) (2001) 48615-48618. [22] K.S. Smith, J.G. Ferry, Prokaryotic carbonic anhydrase, FEMS Microboil. Rev. 24(4) (2000) 335-366. [23] D. Park, M.S. Lee, Kinetic study of catalytic CO2 hydration by metal-substituted biomimetic carbonic anhydrase model complexes, Roy. Soc. Open Sci. 6(8) (2019) 190407. [24] S.W. Lee, S.B. Park, S.K. Jeong, K.S. Lim, S.H. Lee, M.C. trachetberg, On carbon dioxide storage based on biomineralization strategies, Micron. 41(4) (2009) 273-282. [25] L. Koziol, C.A. Valdez, S.E. Baker, E.Y. Lau, Toward a small molecule, biomimetic carbonic anhydrase model:Theoretical and experimental investigations of a panel of zinc (Ⅱ) as a-macrocyclic catalysts, Inorg. Chem. 51(12) (2012) 6803-6812. [26] C.M. Maupin, R. Mckenna, D.N. Silverman, G.A. Voth, Elucidation of the proton transport mechanism in human carbonic anhydrase Ⅱ, J. Am. Chem. Soc. 131(22) (2009) 7598-7608. [27] F.H. Arnold, The nature of chemical innovation:New enzymes by evolution, Q. Rev. Biophys. 48(4) (2015) 404-410. [28] J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes:An update, Curr. Opin. Biotech. 14(2003) 438-443. [29] A.C. Warden, M. Williams, T.S. Peat, S.A. Seabrook, J. Newman, G. Dojchinov, V.S. Haritos, Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst, Nat. Commun. 6(2015) 10278. [30] B.H. Jo, T.Y. Park, H.J. Park, Y.J. Yeon, Y.J. Yoo, H.J. Cha, Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration, Sci. Rep. 6(2016) (2016) 29322. [31] B.H. Jo, Seul-K. Park, H.J. Cha, Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments, J. CO2 Util. 26(2018) 415-424. [32] A. Giri, D. Pant, Carbonic anhydrase modification for carbon management, Environ. Sci. Pollut. Res. 27(2020) 1294-1318. [33] R. A. Sheldon, S. van Pelt S, Enzyme immobilization in biocatalysis:Why, what and how, Chem. Soc. Rev. 42(15) (2013) 6223-6235. [34] L.Q. Cao, L. van Langen, R.A. Sheldon, Immobilised enzymes:Carrier-bound or carrier-free? Curr. Opin. Biotech. 14(4) (2003) 387-394. [35] M. Vinoba, M. Bhagiyalakshmi, S.K. Jeong, Y.I. Yoon, S.C. Nam, Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2, Colloid. Surface. B. 90(2012) 91-96. [36] G. Jing, F. Pan, B. Lv, Z. Zhou, Immobilization of carbonic anhydrase on epoxyfunctionalized magnetic polymer microspheres for CO2 capture, Process Biochem. 50(2015) 2234-2241. [37] M.M. Li, S. Qiao, Y.L. Zheng, Y.H. Andaloussi, X. Li, Z.J. Zhang, S.Q. Ma, Y. Chen, Fabricating covalent organic framework capsules with commodious microenvironment for enzymes, J. Am. Chem. Soc. 142(14) (2020) 6675-6681. [38] W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch, C.J. Sumby, N.G. White, P. Falcaro, C.J. Doonan, Enzyme encapsulation in a porous hydrogen-bonded organic framework, J. Am. Chem. Soc. 141(36) (2019) 14298-14305. [39] B.K. Shanbhag, B.Y. Liu, F. Jing, V.S. Haritos, L.Z. He, Self-assembled enzyme nanoparticles for carbon dioxide capture, Nano Lett. 16(2016) 3379-3384. [40] S.H. Zhang, Y.Q. Lu, Kinetic performance of CO2 absorption into a potassium carbonate solution promoted with the enzyme carbonic anhydrase:Comparison with a monoethanolamine solution, Chem. Eng. J. 279(2015) 335-343. [41] C. Altinkaynak, S. Tavlasoglu, N. Ozdemir, I. Ocsoy, A new generation approach in enzyme immobilization:Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzyme Microb. Tech. 93-94(2016) 105-112. [42] U. Hanefeld, L.Q. Cao, E. Magner, Enzyme immobilisation:Fundamentals and application, Chem. Soc. Rev. 42(15) (2013) 6211-6212. [43] M.B. Juan, N. Bernd, The microenvironment in immobilized enzymes:Methods of characterization and its role in determining enzyme performance, Molecules. 24(2019) 3460. [44] Y.F. Zhang, J. Ge, Z. Liu, Enhanced activity of immobilized or chemically modified enzymes, ACS Catal. 5(8) (2015) 4503-4513. [45] R.C. Rodrigues, C. Ortiz, A. berenguer-Murcia, R. Torres, R. Fernandez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42(15) (2013) 6290-6307. [46] N. Aissaoui, J. Landoulsi, L. Bergaoui, S. Boujday, J.F. Lambert, Catalytic activity and thermostability of enzymes immobilized on silanized surface:Influence of the crosslinking agent, Enzym. Microb. Technol. 52(6-7) (2013) 336-343. [47] N. Aissaoui, L. Bergaoui, S. Boujday, J.F. Lambert, C. Methivier, J. Landoulsi, Enzyme immobilization on Si lane-modified surface through short linkers:Fate of interfacial phases and impact on catalytic activity, Langmuir. 30(14) (2014) 4066-4077. [48] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotec. Eq. (2015) 205-220. [49] J.F. Shi, Y.Z. Wu, S.H. Zhang, Y. Tian, D. Yang, Z.Y. Jiang, Bioinspired construction of multi-enzyme catalytic systems, Chem. Soc. Rev. 47(12) (2018) 4295-4313. [50] L.A. Estroff, Introduction:Biomineralization, Chem. Rev. 108(11) (2008) 4329-4331. [51] G. Merle, S. Fradette, E. Madore, J.E. Barralet, Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture, Langmuir. 30(23) (2014) 6915-6919. [52] X. Chen, Y. Wang, P. Wang, Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes, Langmuir. 31(1) (2015) 397-403. [53] M. Vinoba, K.S. Lim, S.H. Lee, S.K. Jeong, M. Alagar, Immobilization of human carbonic anhydrase on gold nanoparticles assembled onto amine/thiolfunctionalized mesoporous SBA-15 for biomimetic sequestration of CO2, Langmuir. 27(10) (2011) 6227-6234. [54] S. Zhang, H. Lu, Y. Lu, Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution, Environ. Sci. Technol. 47(23) (2013) 13882-13888. [55] K.M. Woo, I. Lee, S. Hong, S. An, J. Lee, E. Oh, J. Kim, Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion, Chem. Eng. J. 276(2015) 232-239. [56] H.S. Kim, S. Hong, K.M. Woo, V. Teijeiro Seijas, S. Kim, J. Lee, J. Kim, Precipitationbased nanoscale enzyme reactor with improved loading, stability, and mass transfer for enzymatic CO2 conversion and utilization, ACS Catal. 8(7) (2018) 6526-6536. [57] M. Yoshimoto, T. Schweizer, M. Rathlef, T. Pleij, P. Walde, Immobilization of carbonic anhydrase in glass micropipettes and glass fiber filters for flow-through reactor applications, ACS Omega. 3(8) (2018) 10391-10405. [58] Y.Q. Fu, Y.B. Jiang, D. Dunphy, H.F. Xiong, S.B. Rempe, C.J. Brinker, Ultra-thin enzymatic liquid membrane for CO2 separation and capture, Nat. Commum. 9(2018) 2200. [59] A.S. Drozdov, O.E. Shapovalova, V. Ivanovski, D. Avnir, V.V. Vinogradov, Entrapment of enzymes within sol-gel-derived magnetite, Chem. Mater. 28(7) (2016) 2248-2253. [60] J. Hou, G. Dong, B. Xiao, C. Malassigne, V. Chen, Preparation of Titania based biocatalytic nanoparticles and membranes for CO2 conversion, J. Mater. Chem. A 3(7) (2015) 3332-3342. [61] D.C. Matthias, A. Ricardo, B. Marie-Pierre, S.M. Jose, Membrane bioprocesses for pharmaceutical micropollutant removal from waters, Membr. 4(4) (2014) 692-729. [62] N. Endre, Survey on biocatalytic membrane reactor and membrane aerated biofilm reactor, Curr. Org. Chem. 21(17) (2017) 1713-1724. [63] M. Uygun, V.V. Singh, K. Kaufmann, D.A. Uygun, S.D.S. de Oliveira, J. Wang, Micromotor-based biomimetic carbon dioxide sequestration:Towards mobile microscrubbers, Angew. Chem. Int. Edit. 54(44) (2015) 12900-12904. [64] Q. Liu, J. Chapman, A. Huang, N. Garapati, K.A. Sierros, C.Z. Dinu, User-tailored metal-organic frameworks as supports for carbonic anhydrase, ACS Appl. Mater. Interfaces 10(2018) 41326-41337. [65] R. Liu, X.W. Wang, J.R. Yu, Y. Wang, J. Zhu, Z.M. Hu, Surface modification of UHMWPE/fabric composite membrane via self-polymerized polydopamine followed by mPEG-NH2 immobilization, J. Appl. Polym. Sci. 135(26) (2018) 46428. [66] J. Sun, C.H. Wang, Y.Z. Wang, S.X. Ji, W.F. Liu, Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes, J. Appl. Polym. Sci. 136(2019) 47784. [67] Y.L. Xu, Y.Q. Lin, N.G.P. Chew, C. Malde, R. Wang, Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor, J. Membr. Sci. 572(2019) 532-544. [68] Y. Zhang, Y. Legrand, E. Petit, C.T. Supuran, M. Barboiu, Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynameric host matrices, Chem. Commun. 52(21) (2016) 4053-4055. [69] K. Maeshima, M. Yoshimoto, Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles, Enzyme. Microb. Tech. 105(2017) 9-17. [70] J. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 5(38) (2009) 1477-1504. [71] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs, Coord. Chem. Rev. 307(2016) 237-254. [72] P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A. Hill, M.J. Styles, MOF positioning technology and device fabrication, Chem. Soc. Rev. 43(2014) 5513-5560. [73] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Largescale screening of hypothetical metal-organic frameworks, Nat. Chem. 4(2011) 83-89. [74] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem. Rev. 112(2012) 1232-1268. [75] M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metalorganic frameworks and their bio-related applications, Coord. Chem. Rev. 307(2016) 342-360. [76] K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat. Commun. 6(2015) 7240. [77] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013) 1230444. [78] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14(2014) 5761-5765. [79] C. Doonan, R. Ricco, K. Liang, D. Bradshaw, P. Falcaro, Metal-organic frameworks at the biointerface:Synthetic strategies and applications, Acc. Chem. Res. 50(2017) 1423-1432. [80] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. Okeeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, P. Natl. Acad. Sci. USA 103(2006) 10186-10191. [81] F.S. Liao, W.S. Lo, Y.S. Hsu, C.C. Wu, S.C. Wang, F.K. Shieh, J.V. Morabito, L.Y. Chou, K. C. Wu, C.K. Tsung, shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach, J. Am. Chem. Soc. 19(139) (2017) 196530-196533. [82] Y.Y. Chu, J.W. Hou, C. Boyer, J. Richardson, K. Liang, J.T. Xu, Biomimetic synthesis of coordination network materials:Recent advances in MOFs and MPNs, Appl. Mater. Today 10(2018) 93-105. [83] F.K. Shieh, S.C. Wang, Chia-I Yen, C.C. Wu, Saikat Dutta, L.Y. Chou, J.V. Morabito, P. Hu, M.H. Hsu, K.C. Wu, C.K. Tsung, Imparting functionality to biocatalysts via embedding enzymes into nanopores materials by a de novo approach:Size-selective sheltering of catalase in metal-organic framework microcrystals, J. Am. Chem. Soc. 13(137) (2015) 4276-4279. [84] S.H. Zhang, M. Du, P.J. Shao, L.D. Wang, J.X. Ye, J. Chen, J.M. Chen, Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary-amine solution, Environ. Sci. Technol. 52(2018) 12708-12716. [85] Y.Y. Sun, J.F. Shi, S.H. Zhang, Y.Z. Wu, S. Mei, W.L. Qian, Z.Y. Jiang, Hierarchically porous and water-tolerant metal-organic frameworks for enzyme encapsulation, Ind. Eng. Chem. Res. 58(2019) 12835-12844. [86] Y.M. Zhang, H.X. Wang, J.D. Liu, J.W. Hou, Y.T. Zhang, Enzyme-embedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture, J. Mater. Chem. A 5(2017) 19954. [87] S.Z. Ren, C.H. Li, Z.L. Tan, Y. Hou, S.R. Jia, J.D. Cui, Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture, J. Agric. Food Chem. 67(2019) 3372-3379. [88] S.B. Li, M. Dharmarwardana, R.P. Welch, Y.X. Ren, C.M. Thompson, R.A. Smaldone, J. J. Gassensmith, Template-directed synthesis of porous and protective core-shell bionanoparticles, Angew. Chem. Int. Edit. 55(2016) 10691-10696. [89] N. Shamraja, R. Virendra, Magnetic-metal organic framework (magnetic-MOF):A novel platform for enzyme immobilization and nanozyme applications, Int. J boil. Macromol. 120(2018) 2293-2302. [90] G. Cheng, We. Li, L. Ha, X. Han, S. Hao, Y. Wan, Z. Wang, F. Dong, X. Zou, Y. Mao, S.Y. Zheng, Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins, J. Am. Chem. Soc. 140(2018) 7282-7291. [91] T.T. Chen, J.T. Yi, Y.Y. Zhao, X. Chu, Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins, J. Am. Chem. Soc. 140(2018) 9912-9920. [92] W. Liang, R. Ricco, N.K. Maddigan, R.P. Dickinson, H. Xu, Q. Li, C.J. Sumby, S.G. Bell, P. Falcaro, C.J. Doonan, Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites, Chem. Mater. 30(2018) 1069-1077. [93] G.S. Chen, S.M. Huang, X.X. Kou, S.B. Wei, S.Y. Huang, S.Q. Jiang, J. Shen, F. Zhu, G.F. Ouyang, A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks, Angew. Chem. Int. Edit. 58(2019) 1463-1467. [94] X.Z. Lian, Y. Fang, E. Joseph, Q. Wang, J.L. Li, S. Banerjee, C. Christina, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, 46(2017) 3386-3401. [95] K. Liang, J.J. Richardson, J.W. Cui, F. Caruso, C.J. Doonan, P. Falcaro, Metal-organic framework coatings as cytoprotective exoskeletons for living cells, Adv. Mater. 28(2016) 7910-7914. [96] W.H. Chen, M. Vazquez-Gonzalez, A. Zoabi, R. Abu-Reziq, I. Willner, Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles, Nat. Catal. 1(2018) 689-695. [97] S. Gao, J.W. Hou, Z.Y. Deng, T.S. Wang, S. Beyer, A.G. Buzanich, J.J. Richardson, A. Rawal, R. Seidel, M.Y. Zulkifli, W.W. Li, T.D. Bennett, A.K. Cheetham, K. Liang, V. Chen, Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules, Chem 5(2019) 1597-1608. [98] S. Ren, Y. Feng, H. Wen, C. Li, B. Sun, J. Cui, S. Jia, Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration, Int. J. Biol. Macromol. 117(2018) 189-198. [99] J.M. Lalande, C.A. Levis, A. Tremblay, Process and a Plant for the Production of Portland Cement Clinker, US Pat., 6908507(2005). [100] M.E. Russo, G. Olivieri, A. Marzocchella, P. Salatino, P. Caramuscio, C. Cavaleiro, Post-combustion carbon capture mediated by carbonic anhydrase, Sep. Purif. Technol. 107(2013) 331-339. [101] J. Readon, T. Buchloz, M. Hulvey, J. Tuttle, A. Shaffer, D. Pulvirenti, L. Weber, K. Killian, A. Zaks, Low energy CO2 capture enabled by biocatalyst delivery system, Energy Procedia 63(2014) 301-321. [102] M. Leimbrink, T. Limberg, A.K. Kunze, M. Skiborowski, Different strategies for accelerated CO2 absorption in packed columns by application of the biocatalyst carbonic anhydrase, Energy Procedia 114(2017) 781-794. [103] M. Leimbrink, K.G. Nikoleit, R. Spitzer, S. Salmon, T. Bucholz, A. Gorak, M. Skiborowski, Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system, Chem. Eng. J. 334(2018) 1195-1205. [104] Y.L. Zhu, W.Y. Li, G.Z. Sun, Q. Tang, H.B. Bian, Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor, Int. J. Green. Gas Con. 49(2016) 290-296. |