[1] P.H. Gleick, Basic water requirements for human activities: Meeting basic needs, Water Int. 21 (2) (1996) 83-92. [2] W.F. Wang, H. Gao, S.C. Jin, R.J. Li, G.S. Na, The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review, Ecotoxicol. Environ. Saf. 173 (2019) 110-117. [3] S. Nojavan, M. Yazdanpanah, Micro-solid phase extraction of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using water-insoluble β-cyclodextrin polymer as sorbent, J. Chromatogr. A 1525 (2017) 51-59. [4] X.F. Zheng, Q.Q. Ruan, Q. Jiang, K.K. Wang, Q.H. Wang, Y.Z. Tang, H.L. Huang, C.L. Zhong, Integrated adsorption and catalytic degradation of safranine T by a porous covalent triazine-based framework, J. Colloid Interface Sci. 532 (2018) 1-11. [5] D. Cui, Y.Q. Guo, H.Y. Cheng, B. Liang, F.Y. Kong, H.S. Lee, A.J. Wang, Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor, J. Hazard. Mater. 239-240 (2012) 257-264. [6] S. Karimifard, M.R. Alavi Moghaddam, Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review, Sci. Total Environ. 640-641 (2018) 772-797. [7] X. Huang, X.W. Bo, Y.X. Zhao, B.Y. Gao, Y. Wang, S.L. Sun, Q.Y. Yue, Q. Li, Effects of compound bioflocculant on coagulation performance and floc properties for dye removal, Bioresour. Technol. 165 (2014) 116-121. [8] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci. 209 (2014) 172-184. [9] S. Debnath, N. Ballav, A. Maity, K. Pillay, Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin, J. Mol. Liq. 225 (2017) 679-688. [10] J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Alvarez, M.C.M. Alvim-Ferraz, J.M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater. 187 (1-3) (2011) 1-23. [11] M. Delkash, B. Ebrazi Bakhshayesh, H. Kazemian, Using zeolitic adsorbents to cleanup special wastewater streams: A review, Microporous Mesoporous Mater. 214 (2015) 224-241. [12] B. Chen, Q.L. Ma, C.L. Tan, T.T. Lim, L. Huang, H. Zhang, Carbon-based sorbents with three-dimensional architectures for water remediation, Small 11 (27) (2015) 3319-3336. [13] C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chem. Eng. J. 306 (2016) 1116-1137. [14] G.H. Jing, L. Wang, H.J. Yu, W.A. Amer, L. Zhang, Recent progress on study of hybrid hydrogels for water treatment, Colloids Surf. A Physicochem. Eng. Aspects 416 (2013) 86-94. [15] M. Khan, I.M.C. Lo, A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives, Water Res. 106 (2016) 259-271. [16] F.L. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: A review, J. Hazard. Mater. 267 (2014) 194-205. [17] P. Singh, I.N. Singh, S.C. Mondal, L. Singh, V.K. Garg, Platelet-activating factor (PAF)-antagonists of natural origin, Fitoterapia 84 (2013) 180-201. [18] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res. 91 (2016) 156-173. [19] R.P. Alberto, S. Alessandra, C. Fabrizio, M. Giorgia, D. Nilesh Kumar, C. Claudio, H. Asma, C. Ilaria, T. Francesco, Eco-friendly β-cyclodextrin and linecaps polymers for the removal of heavy metals, Polymers 11 (10) (2019) 1658. [20] K.Y.A. Lin, H.A. Chang, A zeolitic imidazole framework (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method, J. Mater. Chem. A 3 (40) (2015) 20060-20064. [21] N. Wang, X.F. Li, J. Yang, Y.X. Shen, J. Qu, S. Hong, Z.Z. Yu, Fabrication of a compressible PU@RGO@MnO2 hybrid sponge for efficient removal of methylene blue with an excellent recyclability, RSC Adv. 6 (91) (2016) 88897-88903. [22] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, Polyurethane types, synthesis and applications-A review, RSC Adv. 6 (115) (2016) 114453-114482. [23] K. Dong, F.X. Qiu, X.R. Guo, J.C. Xu, D.Y. Yang, K.C. He, Adsorption behavior of azo dye eriochrome black T from aqueous solution by β-cyclodextrins/polyurethane foam material, Polym. Plast. Technol. Eng. 52 (5) (2013) 452-460. [24] H.J. Hong, J.S. Lim, J.Y. Hwang, M. Kim, H.S. Jeong, M.S. Park, Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions, Carbohydr. Polym. 195 (2018) 136-142. [25] R.A. Osmani, P. Kulkarni, S. Manjunatha, V. Gowda, U. Hani, R. Vaghela, R. Bhosale, Cyclodextrin nanosponges in drug delivery and nanotherapeutics, Environ. Nanotechnol. 14 (2018) 279-342. [26] S. Selvamuthukumar, S. Anandam, K. Krishnamoorthy, M. Rajappan, Nanosponges: A novel class of drug delivery system: Review, J. Pharm. Pharm. Sci. 15 (1) (2012) 103-111. [27] K.A. Ansari, P.R. Vavia, F. Trotta, R. Cavalli, Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study, AAPS PharmSciTech 12 (1) (2011) 279-286. [28] S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G. Zara, R. Cavalli, Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity, Eur. J. Pharm. Biopharm. 74 (2) (2010) 193-201. [29] W.T. Liang, C. Yang, D.Y. Zhou, H. Haneoka, M. Nishijima, G. Fukuhara, T. Mori, F. Castiglione, A. Mele, F. Caldera, F. Trotta, Y. Inoue, Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges, Chem. Commun. 49 (34) (2013) 3510. [30] A.P. Sherje, B.R. Dravyakar, D. Kadam, M. Jadhav, Cyclodextrin-based nanosponges: A critical review, Carbohydr. Polym. 173 (2017) 37-49. [31] C. Wang, X.R. Li, B. Du, P.Z. Li, X.J. Lai, Y.H. Niu, Preparation and properties of a novel waterborne fluorinated polyurethane-acrylate hybrid emulsion, Colloid Polym. Sci. 292 (3) (2014) 579-587. [32] S.S. Banerjee, D.H. Chen, Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery, Nanotechnology 19 (26) (2008) 265602. [33] M.E. Mahmoud, M.F. Amira, S.M. Seleim, A.K. Mohamed, Adsorption isotherm models, kinetics study, and thermodynamic parameters of Ni(II) and Zn(II) removal from water using the LbL technique, J. Chem. Eng. Data 62 (2) (2017) 839-850. [34] J.W. Wang, L. Dai, Y.Q. Liu, R.F. Li, X.T. Yang, G.H. Lan, H.Y. Qiu, B. Xu, Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue, Carbohydr. Res. 501 (2021) 108276. [35] L. Chen, Y.H. Li, S. Hu, J.K. Sun, Q.J. Du, X.X. Yang, Q. Ji, Z.H. Wang, D.C. Wang, Y.Z. Xia, Removal of methylene blue from water by cellulose/graphene oxide fibres, J. Exp. Nanosci. 11 (14) (2016) 1156-1170. [36] M. Verma, I. Lee, Y. Hong, V. Kumar, H. Kim, Multifunctional β-cyclodextrin-EDTA-chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater, Environ. Pollut. 292 (Pt B) (2022) 118447. [37] M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes-methylene blue and safranin-O using Fe3O4 nanoparticles, Chem. Eng. J. 268 (2015) 28-37. [38] A.A. Mohammadi, A. Alinejad, B. Kamarehie, S. Javan, A. Ghaderpoury, M. Ahmadpour, M. Ghaderpoori, Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions, Int. J. Environ. Sci. Technol. 14 (2017) 1959-1968. [39] J.J. Chen, H.L. Chen, Removal of anionic dyes from an aqueous solution by a magnetic cationic adsorbent modified with DMDAAC, New J. Chem. 42 (9) (2018) 7262-7271. [40] Ş. Parlayici, Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: Kinetic, thermodynamic, and equilibrium studies, J. Anal. Sci. Technol. 10 (2019) 1-15. [41] A. Ebadi, A.A. Rafati, Preparation of silica mesoporous nanoparticles functionalized with β-cyclodextrin and its application for methylene blue removal, J. Mol. Liq. 209 (2015) 239-245. [42] J.B. Zhang, Y. Wang, D.X. Liang, Z.F. Xiao, Y.J. Xie, J. Li, Sulfhydryl-modified chitosan aerogel for the adsorption of heavy metal ions and organic dyes, Ind. Eng. Chem. Res. 59 (32) (2020) 14531-14536. [43] J.H. Deng, X.R. Zhang, G.M. Zeng, J.L. Gong, Q.Y. Niu, J. Liang, Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chem. Eng. J. 226 (2013) 189-200. [44] F.P. Zhao, E. Repo, Y. Meng, X.T. Wang, D.L. Yin, M. Sillanpää, An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater, J. Colloid Interface Sci. 465 (2016) 215-224. |