[1] A. S. Soliman, L. Xu, J.G. Dong, P. Cheng, A novel heat sink for cooling photovoltaic systems using convex/concave dimples and multiple PCMs, Appl. Therm. Eng. 215 (2022) 119001. [2] J. Kim, J. Lee, C. Song, J. Yun, W.S. Choi, Enhanced thermal performances of PCM heat sinks enabled by layer-by-layer-assembled carbon nanotube-polyethylenimine functional interfaces, Energy Convers. Manag. 266(2022)115853. [3] G. Hekimoğlu, M. Nas, M. Ouikhalfan, A. Sarı, V.V. Tyagi, R.K. Sharma, Ş. Kurbetci, T.A. Saleh, Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: thermal energy storage and mechanical properties, Energy 219 (2021) 119588. [4] A. Sarı, T.A. Saleh, G. Hekimoğlu, V.V. Tyagi, R.K. Sharma, Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage, J. Mol. Liq. 328 (2021) 115508. [5] G. Hekimoğlu, A. Sarı, T. Kar, S. Keleş, K. Kaygusuz, N. Yıldırım, V.V. Tyagi, R.K. Sharma, T.A. Saleh, Carbonized waste hazelnut wood-based shape-stable composite phase change materials for thermal management implementations, Int. J. Energy Res. 45 (7) (2021) 10271-10284. [6] T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innov. 20 (2020) 101067. [7] Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy 80 (2021) 105454. [8] J.L. Tao, J.D. Luan, Y. Liu, D.Y. Qu, Z. Yan, X. Ke, Technology development and application prospects of organic-based phase change materials: an overview, Renew. Sustain. Energy Rev. 159 (2022) 112175. [9] P.P. Zhao, P. Lu, Z.Y. Zhao, S.W. Chen, X.Y. Li, C. Deng, Y.Z. Wang, Aromatic Schiff Base-Based Polymeric Phase Change Materials for Safe, Leak-Free, and Efficient Thermal Energy Management, Chem. Eng. J. 437 (2022) 135461. [10] S.B. Xi, L.L. Wang, H.Q. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage, ACS Nano 16 (3) (2022) 3843-3851. [11] X.X. Yan, Y.H. Feng, L. Qiu, X.X. Zhang, Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials, Energy 233 (2021) 121158. [12] X.X. Yan, H.B. Zhao, Y.H. Feng, L. Qiu, L. Lin, X.X. Zhang, T. Ohara, Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials, Compos. B Eng. 228 (2022) 109435. [13] S.L. Shen, S.J. Tan, S. Wu, C. Guo, J. Liang, Q. Yang, G.Y. Xu, J. Deng, The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials, Energy Convers. Manag. 157 (2018) 41-48. [14] Q. Zhang, Z.L. Luo, Q.L. Guo, G.H. Wu, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers. Manag. 136 (2017) 220-228. [15] C. Ma, J. Wang, Y. Wu, Y.C. Wang, Z.J. Ji, S. Xie, Characterization and thermophysical properties of erythritol/expanded graphite as phase change material for thermal energy storage, J. Energy Storage 46 (2022) 103864. [16] N. Sheng, K.X. Dong, C.Y. Zhu, T. Akiyama, T. Nomura, Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler, Mater. Chem. Phys. 229 (2019) 87-91. [17] S. Yang, X.F. Shao, H. Shi, J.Q. Luo, L.W. Fan, Bubble-injection-enabled significant reduction of supercooling and controllable triggering of crystallization of erythritol for medium-temperature thermal energy storage, Solar Energy Materials and Solar Cells, 236(2022)111538 [18] N.R. Feng, Z. Kang, D.Y. Hu, Shape-stabilized and antibacterial composite phase change materials based on wood-based cellulose micro-framework, erythritol-urea or erythritol-thiourea for thermal energy storage, Sol. Energy 223 (2021) 19-32. [19] H.Y. Zhang, J.X. Cheng, Q.B. Wang, D.B. Xiong, J.L. Song, Z.F. Tang, X.D. Liu, The graphite foam/erythritol composites with ultrahigh thermal conductivity for medium temperature applications, Sol. Energy Mater. Sol. Cells 230 (2021) 111135. [20] M.D. Yuan, C. Xu, T.Y. Wang, T.Y. Zhang, X.Y. Pan, F. Ye, Supercooling suppression and crystallization behaviour of erythritol/expanded graphite as form-stable phase change material, Chem. Eng. J. 413 (2021) 127394. [21] J.L. Zeng, S.L. Sun, L. Zhou, Y.H. Chen, L. Shu, L.P. Yu, L. Zhu, L.B. Song, Z. Cao, L.X. Sun, Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells, J. Therm. Anal. Calorim. 129 (3) (2017) 1583-1592. [22] M. George, A.K. Pandey, N.A. Rahim, V.V. Tyagi, S. Shahabuddin, R. Saidur, Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials, J. Energy Storage 31 (2020) 101568. [23] J.L. Zeng, F.R. Zhu, S.B. Yu, Z.L. Xiao, W.P. Yan, S.H. Zheng, L. Zhang, L.X. Sun, Z. Cao, Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells 114 (2013) 136-140. [24] Y.H. Chen, L.M. Jiang, Y. Fang, L. Shu, Y.X. Zhang, T. Xie, K.Y. Li, N. Tan, L. Zhu, Z. Cao, J.L. Zeng, Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material, Sol. Energy Mater. Sol. Cells 200 (2019) 109989. [25] B. Yang, N. Wang, Y.W. Song, J.M. Liu, Study on the improvement of supercooling and thermal properties of erythritol-based phase change energy storage materials, Renew. Energy 175 (2021) 80-97. [26] H.Q. Liu, K.Y. Sun, X.Y. Shi, H.N. Yang, H.S. Dong, Y. Kou, P. Das, Z.S. Wu, Q. Shi, Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges, Energy Storage Mater. 42 (2021) 845-870. [27] Y.R. Shi, M.A. Gerkman, Q.F. Qiu, S.R. Zhang, G.G.D. Han, Sunlight-activated phase change materials for controlled heat storage and triggered release, J. Mater. Chem. A 9 (15) (2021) 9798-9808. [28] M.D. Yuan, Y.X. Ren, C. Xu, F. Ye, X.Z. Du, Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage, Renew. Energy 136 (2019) 211-222. [29] Y. Du, H.W. Huang, X.P. Hu, S. Liu, X.X. Sheng, X.L. Li, X. Lu, J.P. Qu, Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion, Renew. Energy 171 (2021) 1-10. [30] F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials, Nanoscale 12 (6) (2020) 4005-4017. [31] H.Y. Wu, R.T. Chen, Y.W. Shao, X.D. Qi, J.H. Yang, Y. Wang, Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability, ACS Sustain. Chem. Eng. 7 (15) (2019) 13532-13542. [32] J.L. Zeng, Y.H. Chen, L. Shu, L.P. Yu, L. Zhu, L.B. Song, Z. Cao, L.X. Sun, Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 178 (2018) 84-90. [33] H.Y. Wu, S.T. Li, Y.W. Shao, X.Z. Jin, X.D. Qi, J.H. Yang, Z.W. Zhou, Y. Wang, Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J. 379 (2020) 122373. [34] H.Y. Wu, S. Deng, Y.W. Shao, J.H. Yang, X.D. Qi, Y. Wang, Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization, ACS Appl. Mater. Interfaces 11 (50) (2019) 46851-46863. [35] Y.W. Shao, W.W. Hu, M.H. Gao, Y.Y. Xiao, T. Huang, N. Zhang, J.H. Yang, X.D. Qi, Y. Wang, Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions, Compos. A Appl. Sci. Manuf. 143 (2021) 106291. [36] F. Xue, C.H. Huang, X.D. Qi, J.H. Yang, C.S. Zhao, Y.Z. Lei, Y. Wang, Largely improved thermal conductivity and flame resistance of phase change materials based on three-dimensional melamine foam/phosphorous cellulose/graphite nanoplatelets network with multiple energy transition abilities, Compos. A Appl. Sci. Manuf. 156 (2022) 106898. [37] F. Xue, Y. Lu, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities, Chem. Eng. J. 365 (2019) 20-29. [38] Y.S. Wang, J. Luo, S. Wang, Q. Ma, D.Q. Zou, Shape-stabilized phase change material with internal coolant channel coupled with phase change emulsion for power battery thermal management, Chem. Eng. J. 438 (2022) 135648. [39] E. Shamsaei, F. Basquiroto de Souza, A. Fouladi, K. Sagoe-Crentsil, W.H. Duan, Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: synthesis and application for thermal energy storage, ACS Appl. Energy Mater. 5 (1) (2022) 958-969. [40] F.K. Ma, L.Q. Liu, L.Q. Ma, Q. Zhang, J.N. Li, M. Jing, W.J. Tan, Enhanced thermal energy storage performance of hydrous salt phase change material via defective graphene, J. Energy Storage 48 (2022) 104064. [41] T.A. Saleh, Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes, Chem. Eng. J. 404 (2021) 126987. [42] T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Clean. Prod. 172 (2018) 2123-2132. [43] Y. Wang, S. Li, T. Zhang, D.Y. Zhang, H. Ji, Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 171 (2017) 60-71. [44] S.Y. Chai, K.Y. Sun, D.H. Zhao, Y. Kou, Q. Shi, Form-stable erythritol/HDPE composite phase change material with flexibility, tailorability, and high transition enthalpy, 2(11)(2020)4464-4471. [45] Q.J. Cheng, X.L. Cheng, X. Wang, P.X. Du, C.Z. Liu, Z.H. Rao, Supercooling regulation and thermal property optimization of erythritol as phase change material for thermal energy storage, J. Energy Storage 52 (2022) 105000. [46] T. A. Saleh, M. Tuzen, A. Sarı, Polyamide magnetic palygorskite for the simultaneous removal of Hg (II) and methyl mercury; with factorial design analysis, J. Environ. Manage. 211 (2018) 323-333. [47] S.O. Adio, M.H. Omar, M. Asif, T.A. Saleh, Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis, Process. Saf. Environ. Prot. 107 (2017) 518-527. |