[1] E. L. Paul, V. A. Atiemo-Obeng, S. M. Kresta, Handbook of Industrial Mixing-Science and Practice, John Wiley & Sons, New Jersey, 2004. [2] K. Kling, D. Mewes, Two-colour laser induced fluorescence for the quantifcation of micro- and macromixing in stirred vessels, Chem. Eng. Sci. 50 (2004) 1523-1528. [3] Z. Mao, C. Yang, Micro-mixing in chemical reactors: A perspective, Chin. J. Chem. Eng. 25 (2017) 381-390. [4] Z. Liu, L. Guo, T. Huang, L. Wen, J. F. Chen, Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions, Chem. Eng. Sci. 119 (2014) 124-133. [5] M. Buchmann, D. Mewes, Measurement of the Local Intensities of Segregation with the Tornographical Dual Wavelength Photometry, Can. J. Chem. Eng. 76 (1998) 626-630. [6] K. Alena, J. Aubin, S. M. Kresta, A new definition of mixing and segregation: Three dimensions of a key process variable, Chem. Eng. Res. Des. 87 (2009) 633-647. [7] P. V. Danckwerts, The definition and measurement of some characteristics of mixtures, Appl. Sci. Res. 3 (1952) 279-296. [8] R. A. Bakker, H. E. A. V. D. Akker, A Lagrangian description of micromixing in a stirred tank reactor using 1D-micromixing models in a CFD flow field, Chem. Eng. Sci. 51 (1996) 2643-2648. [9] G. Pagnini, The kernel method to compute the intensity of segregation for reactive pollutants: Mathematical formulation, Atmos. Environ. 43 (2009) 3691-3698. [10] M. Buchmann, D. Mewes, Tomographic measurements of micro- and macromixing using the dual wavelength photometry, Chem. Eng. J. 77 (2000) 3-9. [11] D. Bothe, C. Stemich, H. J. Warnecke, Fluid mixing in a T-shaped micro-mixer, Chem. Eng. Sci. 61 (2006) 2950-2958. [12] J. Dusting, S. Balabani, Mixing in a Taylor-Couette reactor in the non-wavy flow regime, Chem. Eng. Sci. 64 (2009) 3103-3111. [13] A. B. Banaga, X. J. Yue, G. W. Chu, W. Wu, Y. Luo, J. F. Chen, Micromixing performance in a rotating bar reactor, Can. J. Chem. Eng. 98 (2020) 1776-1783. [14] S. A. Martínez-Delgadillo, H. R. Mollinedo P, M. A. Gutiérrez, I. D. Barceló, J. M. Méndez, Performance of a tubular electrochemical reactor, operated with different inlets, to remove Cr(VI) from wastewater, Comp. Chem. Eng. 34 (4) (2010) 491-499. [15] N. A. Wilkinson, C. S. Dutcher, Axial mixing and vortex stability to in situ radial injection in Taylor-Couette laminar and turbulent flows, J. Fluid. Mech. 854 (2018) 324-347. [16] H. Elçiçek, B. Güzel, Effect of shear-thinning behavior on flow regimes in Taylor-Couette flows, J Non-Newtonian Fluid Mech. 279 (2020) 104277. [17] M. Nemri, E. Climent, S. Charton, J. Y. Lanoe, D. Ode, Experimental and numerical investigation on mixing and axial dispersion in Taylor-Couette flow patterns, Chem. Eng. Res. Des. 91 (2013) 2346-2354. [18] H. L. Gao, Z. N. Wen, B. C. Sun, H. K. Zou, G. W. Chu, Intensification of ozone mass transfer for wastewater treatment using a rotating bar reactor, Chem. Eng. Process. 176 (2022) 108946. [19] L. Marc, S. Guillemer, J. M. Schneider, G. Coquerel, Continuous chiral resolution of racemic Ibuprofen by diastereomeric salt formation in a couette-taylor crystallizer, Chem. Eng. Res. Des. 178 (2022) 95-110. [20] M. Schrimpf, J. Esteban, H. Warmeling, T. Färber, A. Behr, A. J. Vorholt, Taylor-Couette reactor: Principles, design, and applications, AIChE J. 67 (5) (2021) e17228. [21] B. Judat, A. Racina, M. Kind, Macro- and Micromixing in a Taylor-Couette Reactor with Axial Flow and their Influence on the Precipitation of Barium Sulfate, Chem. Eng. Technol. 27 (3) (2004) 287-292. [22] I. Houcine, H. Vivier, E. Plasari, R. David, J. Villermaux, Planar laser induced fluorescence technique for measurements of concentration fields in continuous stirred tank reactors, Exp. Fluids. 22 (1996) 95-112. [23] P. Tahvildarian, H. Ng, M. D’Amato, S. Drappel, F. Ein-Mozaffari, Using electrical resistance tomography images to characterize the mixing of micron-sized polymeric particles in a slurry reactor, Chem. Eng. J. 172 (1) (2011) 517-525. [24] P. E. Arratia, F. J. Muzzio, Planar Laser-Induced Fluorescence Method for Analysis of Mixing in Laminar Flows, Ind. Eng. Chem. Res. 43 (20) (2004) 6557-6568. [25] M. Taghavi, J. Moghaddas, Using PLIF/PIV techniques to investigate the reactive mixing in stirred tank reactors with Rushton and pitched blade turbines, Chem. Eng. Res. Des. 151 (2019) 190-206. [26] F. Guillard, C. Tragardh, L. Fuchs, A study of turbulent mixing in a turbine-agitated tank using a fluorescence technique, Exp. Fluids. 28 (2000) 225-235. [27] A. L. Bowler, S. Bakalis, N. J. Watson, A review of in-line and on-line measurement techniques to monitor industrial mixing processes, Chem. Eng. Res. Des. 153 (2020) 463-495. [28] M. Sharifi, B. Young, Electrical Resistance Tomography (ERT) applications to Chemical Engineering, Chem. Eng. Res. Des. 91 (2013) 1625-1645. [29] F. Parvizian, M. Rahimi, N. Azimi, N. Macro- and micromixing studies on a high frequency continuous tubular sonoreactor, Chem. Eng. Process. 57-58 (2012) 8-15. [30] S. Mohammadi, K. V. K. Boodhoo, Online conductivity measurement of residence time distribution of thin film flow in the spinning disc reactor, Chem. Eng. J. 207-208 (2012) 885-894. [31] P. Emma, Sampling and Analysis of Environmental Chemical Pollutants: A Complete Guide, 2nd ed., Elsevier, USA, 2018. [32] G. Desmet, H. Verelst, G. V. Baron, Transient and stationary axial dispersion in vortex array flows-I. Axial scan measurements and modeling of transient dis-persion effects, Chem. Eng. Sci. 52 (1997) 2383-2401. [33] G. Desmet, H. Verelst, G. V. Baron, Transient and stationary axial dispersion in vortex array flows-II. Decoupling of inter- and intra-vortex transport phenomena, Chem. Eng. Sci. 52 (1997) 2403-2419. [34] A. Akonur, R. M. Lueptow, Chaotic mixing and transport in wavy Taylor-Couette flow, Physica D. 167 (2002) 183-196. [35] M. Nemri, S. Charton, E. Climent, Mixing and axial dispersion in Taylor-Couette flows: the effect of the flow regime, Chem. Eng. Sci. 139 (2016) 109-124. [36] O. Richter, H. Hoffmann, B. Kraushaar-Czarnetzki, Effect of the rotor shape on the mixing characteristics of a continuous flow Taylor-vortex reactor, Chem. Eng. Sci. 63 (2008) 3504-3513. [37] Z. Rida, S. Cazin, F. Lamadie, D. Dherbécourt, S. Charton, E. Climent, Experimental investigation of mixing efficiency in particle-laden Taylor-Couette flows, Exp. Fluids. 60 (4) (2019). [38] Z. H. Liu, X. T. Wang, W. Liu, H. L. Gao, G. W. Chu, Mass transfer enhancement in a rotating bar reactor: Gas dispersion and liquid disturbance, Chem. Eng. Process. 172 (2022) 108774. [39] S. J. Khang, O. Levenspiel, New scale-up and design method for stirrer agitated batch mixing vessels, Chem. Eng. Sci. 31 (7) (1976) 569-577. [40] P. V. Danckwerts, The effect of incomplete mixing on homogeneous reactions, Chem. Eng. Sci. 8(1-2) (1958) 93-102. [41] L. S. Méndez-Portillo, M. Heniche, C. Dubois, P. A. Tanguy, Numerical investigation of the hydrodynamics of split-and-recombination and multilamination microreactors, AIChE J. 59 (3) (2013) 988-1001. [42] H. L. Toor, Intensity of segregation revisited, AIChE J. 43 (1997) 263-264. [43] J. Z. Luo, Y. Luo, G. W. Chu, M. Arowo, Y. Xiang, B. C. Sun, J. F. Chen, Micromixing efficiency of a novel helical tube reactor: CFD prediction and experimental characterization, Chem. Eng. Sci. 155 (2016) 386-396. [44] J. Z. Luo, G. W. Chu, Y. Luo, M. Arowo, B. C. Sun, J. F. Chen, Regulating the Micromixing Efficiency of a Novel Helical Tube Reactor by Premixing Behavior Optimization, AIChE J. 63 (2017) 2876-2887. [45] S. Vedantam, J. B. Joshi, S. B. Koganti, CFD Simulation of RTD and Mixing in the Annular Region of a Taylor-Couette Contactor, Ind. Eng. Chem. Res. 45 (2006) 6360-6367. [46] H. Bockhorn, D. Mewes, W. Peukert, H. J. Warnecke, Micro and Macro Mixing: Analysis, Simulation and Numerical Calculation, 1st ed., Springer, Berlin, 2010. [47] R. Kadar, C. Balan, Transient dynamics of the wavy regime in Taylor-Couette geometry, Eur. J. Mech. B/Fluids. 31 (2012) 158-167. [48] H. Wang, M. Ahmad, N. P. Anh, Z. Vladimir, R. David, L. Richard, B. A. Kamelia, A review of process intensification applied to solids handling, Chem. Eng. Process. 118 (2017) 78-107. [49] J. S. Kim, D. H. Kim, B. Gu, D. Y. Kim, D. R. Yang. Simulation of Taylor-Couette reactor for particle classification using CFD, J. Crystal. Growth. 373 (2013) 106-110. |