[1] Z. Rafiee, M. Nejatian, M. Daeihamed, S.M. Jafari, Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes, Trends Food Sci. Technol. 88 (2019) 445-458. [2] J. Sharifi-Rad, Y. El Rayess, A.A. Rizk, C. Sadaka, R. Zgheib, W. Zam, S. Sestito, S. Rapposelli, K. Neffe-Skocińska, D. Zielińska, B. Salehi, W.N. Setzer, N.S. Dosoky, Y. Taheri, M. El Beyrouthy, M. Martorell, E.A. Ostrander, H.A.R. Suleria, W.C. Cho, A. Maroyi, N.Martins, Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications, Front. Pharmacol. 11 (2020) 1021. [3] R. Jagannathan, P.M. Abraham, P.Poddar, Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability, J. Phys. Chem. B 116 (50) (2012) 14533-14540. [4] C. Her, M.C. Venier-Julienne, E.Roger, Improvement of curcumin bioavailability for medical applications, Med. Aromat. Plants 7 (6) (2018) 1000326. [5] L. Shen, C.C. Liu, C.Y. An, H.F.Ji, How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies, Sci. Rep. 6 (2016) 20872. [6] R. Adhikary, P.J. Carlson, T.W. Kee, J.W.Petrich, Excited-state intramolecular hydrogen atom transfer of curcumin in surfactant micelles, J. Phys. Chem. B 114 (8) (2010) 2997-3004. [7] S. Mandal, C. Banerjee, S. Ghosh, J. Kuchlyan, N.Sarkar, Modulation of the photophysical properties of curcumin in nonionic surfactant (tween-20) forming micelles and niosomes: a comparative study of different microenvironments, J. Phys. Chem. B 117 (23) (2013) 6957-6968. [8] T. Harada, D.T. Pham, M.H.M. Leung, H.T. Ngo, S.F. Lincoln, C.J. Easton, T.W.Kee, Cooperative binding and stabilization of the medicinal pigment curcumin by diamide linked γ-cyclodextrin dimers: a spectroscopic characterization, J. Phys. Chem. B 115 (5) (2011) 1268-1274. [9] D. Patel, S. Rathod, S. Tiwari, D. Ray, K. Kuperkar, V.K. Aswal, P.Bahadur, Self-association in EO-BO-EO triblock copolymers as a nanocarrier template for sustainable release of anticancer drugs, J. Phys. Chem. B 124 (51) (2020) 11750-11761. [10] C.J. Clarke, W.C. Tu, O. Levers, A. Bröhl, J.P.Hallett, Green and sustainable solvents in chemical processes, Chem. Rev. 118 (2) (2018) 747-800. [11] D.K. Yu, Z.M. Xue, T.C.Mu, Eutectics: formation, properties, and applications, Chem. Soc. Rev. 50 (15) (2021) 8596-8638. [12] J.K. Wang, C.C. Teng, L.F.Yan, Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: research progress and prospects, Green Chem. 24 (2) (2022) 552-564. [13] H. Balaraman, R. Selvasembian, V. Rangarajan, S.Rathnasamy, Sustainable and green engineering insights on deep eutectic solvents toward the extraction of nutraceuticals, ACS Sustainable Chem. Eng. 9 (34) (2021) 11290-11313. [14] Q.H. Zhang, K. De Oliveira Vigier, S. Royer, F.Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (21) (2012) 7108. [15] T. Jeliński, M. Przybyłek, P. Cysewski, Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin, Pharm. Res.36 (8) (2019) 1-10. [16] Y. Chen, T.C. Mu, Revisiting greenness of ionic liquids and deep eutectic solvents, Green Chem. Eng. 2 (2) (2021) 174-186. [17] B.Y. Zhao, P. Xu, F.X. Yang, H. Wu, M.H. Zong, W.Y.Lou, Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica, ACS Sustainable Chem. Eng. 3 (11) (2015) 2746-2755. [18] G.X. Li, C.M. Gui, R.S. Zhu, Z.G.Lei, Deep eutectic solvents for efficient capture of cyclohexane in volatile organic compounds: Thermodynamic and molecular mechanism, AIChE J. 68 (3) (2022) e17535. [19] G.X. Li, Q.H. Liu, C.M. Gui, Z.G.Lei, Thermodynamic and molecular insights into natural gas dehydration using choline chloride-based deep eutectic solvents, AIChE J. 68 (7) (2022) e17662. [20] G.C. Dugoni, M.E. Di Pietro, M. Ferro, F. Castiglione, S. Ruellan, T. Moufawad, L. Moura, M.F. Costa Gomes, S. Fourmentin, A.Mele, Effect of water on deep eutectic solvent/β-cyclodextrin systems, ACS Sustainable Chem. Eng. 7 (7) (2019) 7277-7285. [21] D. Warmińska, B. Nowosielski, A. Szewczyk, J. Ruszkowski, M. Prokopowicz, Effect of choline chloride based natural deep eutectic solvents on aqueous solubility and thermodynamic properties of acetaminophen, J. Mol. Liq. 323 (2021) 114834. [22] A. Zarghampour, M. Moradi, F. Martinez, S. Hemmati, E. Rahimpour, A. Jouyban, Solubility study of mesalazine in the aqueous mixtures of a deep-eutectic solvent at different temperatures, J. Mol. Liq. 336 (2021) 116300. [23] M. Mokhtarpour, H. Shekaari, F. Martinez, M.T. Zafarani-Moattar, Study of naproxen in some aqueous solutions of choline-based deep eutectic solvents: Solubility measurements, volumetric and compressibility properties, Int. J. Pharm. 564 (2019) 197-206. [24] M. Mokhtarpour, P.A. Samberan, B. Golmohammadi, S.G. Fattah, M. Khorsandi, M.R. Behboudi, H. Shekaari, M. Taghi Zafarani-Moattar, Paracetamol in aqueous solutions of polymeric-based deep eutectic solvents; solubility, partitioning, volumetric and compressibility studies, J. Chem. Thermodyn. 158 (2021) 106390. [25] A. Kamal, A. Haghtalab, Experimental and thermodynamic modeling of cefixime trihydrate solubility in an aqueous deep eutectic system, J. Mol. Liq. 304 (2020) 112727. [26] H. Shekaari, M. Mokhtarpour, S. Faraji, M.T. Zafarani-Moattar, Enhancement of curcumin solubility by some choline chloride-based deep eutectic solvents at different temperatures, Fluid Phase Equilibria 532 (2021) 112917. [27] M. Mokhtarpour, N. Basteholia, H. Shekaari, M.T. Zafarani-Moattar, Effect of choline-based ionic liquids as novel green solvents on the aqueous solubility enhancement and thermodynamic properties of acetaminophen, J. Mol. Liq. 306 (2020) 112504. [28] M. Khorsandi, H. Shekaari, M. Mokhtarpour, Measurement and correlation of coumarin solubility in aqueous solution of acidic deep eutectic solvents based on choline chloride, Fluid Phase Equilibria 524 (2020) 112788. [29] H. Shekaari, M.T. Zafarani-Moattar, M. Mokhtarpour, Experimental determination and correlation of acetaminophen solubility in aqueous solutions of choline chloride based deep eutectic solvents at various temperatures, Fluid Phase Equilibria 462 (2018) 100-110. [30] R.S. Payal, R. Bharath, G. Periyasamy, S.Balasubramanian, Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations, J. Phys. Chem. B 116 (2) (2012) 833-840. [31] M.J. DelloStritto, J.D. Kubicki, J.O.Sofo, Effect of ions on H-bond structure and dynamics at the quartz(101)-water interface, Langmuir 32 (44) (2016) 11353-11365. [32] B.B. Cao, J.Y. Du, Z.P. Cao, X.J. Sun, H.T. Sun, H. Fu, DFT study on the dissolution mechanisms of α-cyclodextrin and chitobiose in ionic liquid, Carbohydr. Polym. 169 (2017) 227-235. [33] W.M.A. Wan Mahmood, A. Lorwirachsutee, C. Theodoropoulos, M.Gonzalez-Miquel, Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris, ACS Sustainable Chem. Eng. 7 (5) (2019) 5018-5026. [34] M. Rai, R. Pandit, S. Gaikwad, A. Yadav, A.Gade, Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine, Nanotechnol. Rev. (2015) 161-172. [35] A. Apelblat, E. Manzurola, Solubilities ofo-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, andp-toluic acid, and magnesium-DL, J. Chem. Thermodyn. 31 (1) (1999) 85-91. [36] H. Buchowski, A. Ksiazczak, S.Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J. Phys. Chem. 84 (9) (1980) 975-979. [37] S.H.Yalkowsky, Handbook of Aqueous Solubility Data. CRC Press, Boca Raton, FL,USA 2003 [38] W.X. Li, N. Wang, Z.T. Liu, Z.H. Fei, M. Zheng, J. Zhao, H.K. Zhao, Solubility modelling and thermodynamic properties of allopurinol in aqueous solutions of four deep eutectic solvents, J. Chem. Thermodyn. 132 (2019) 363-372. [39] H. Shekaari, M.T. Zafarani-Moattar, A. Shayanfar, M. Mokhtarpour, Effect of choline chloride/ethylene glycol or glycerol as deep eutectic solvents on the solubility and thermodynamic properties of acetaminophen, J. Mol. Liq. 249 (2018) 1222-1235 [40] T. Lu. Molclus Program, Version 1.9.9.5, http://www.keinsci.com/research/molclus.html (assessed December 20, 2021). [41] C. Bannwarth, S. Ehlert, S.Grimme, GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comput. 15 (3) (2019) 1652-1671. [42] C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S.Grimme, Extended tight-binding quantum chemistry methods, Wires Comput. Mol. Sci. 11 (2) (2021) e1493 [43] L. Goerigk, S.Grimme, Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions, J. Chem. Theory Comput. 7 (2) (2011) 291-309. [44] T.M. Kolev, E.A. Velcheva, B.A. Stamboliyska, M.Spiteller, DFT and experimental studies of the structure and vibrational spectra of curcumin, Int. J. Quantum Chem. 102 (6) (2005) 1069-1079. [45] F.Neese, The ORCA program system, Wires Comput. Mol. Sci. 2 (1) (2012) 73-78. [46] S. Grimme, S. Ehrlich, L.Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (7) (2011) 1456-1465. [47] S. Grimme, J. Antony, S. Ehrlich, H.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (15) (2010) 154104. [48] J.G. Brandenburg, C. Bannwarth, A. Hansen, S.Grimme, B97-3c: a revised low-cost variant of the B97-D density functional method, J. Chem. Phys. 148 (6) (2018) 064104. [49] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J.Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (45) (1994) 11623-11627. [50] R. Krishnan, J.S. Binkley, R. Seeger, J.A.Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1) (1980) 650-654. [51] F. Weigend, R.Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (18) (2005) 3297. [52] A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn, Theor. Chem. Acc.117 (4) (2007) 587-597. [53] T. Lu, F.W.Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [54] E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W.T.Yang, Revealing noncovalent interactions, J. Am. Chem. Soc. 132 (18) (2010) 6498-6506. [55] J.Zhang, Libreta: computerized optimization and code synthesis for electron repulsion integral evaluation, J. Chem. Theory Comput. 14 (2) (2018) 572-587. [56] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33-38. [57] A.P. Abbott, G. Capper, S.Gray, Design of improved deep eutectic solvents using hole theory, ChemPhysChem 7 (4) (2006) 803-806. [58] H. Shekaari, A. Kazempour, Effect of ionic liquid, 1-octyl-3-methylimidazolium bromide on the thermophysical properties of aqueous D, Fluid Phase Equilibria 309 (1) (2011) 1-7. [59] H.L. Friedman, C.V.Krishnan, Studies of hydrophobic bonding in aqueous alcohols: enthalpy measurements and model calculations. The Physical Chemistry of Aqueous System. Boston, MA: Springer US, 1973: 21-42. [60] Y.Z. Shen, A. Farajtabar, J. Xu, J.L. Wang, Y.Y. Xia, H.K. Zhao, R.J. Xu, Thermodynamic solubility modeling, solvent effect and preferential solvation of curcumin in aqueous co-solvent mixtures of ethanol, n-propanol, isopropanol and propylene glycol, J. Chem. Thermodyn. 131 (2019) 410-419. [61] Y. Chen, D.K. Yu, Y.H. Lu, G.H. Li, L. Fu, T.C.Mu, Volatility of deep eutectic solvent choline chloride: N-methylacetamide at ambient temperature and pressure, Ind. Eng. Chem. Res. 58 (17) (2019) 7308-7317. [62] M. Dadkhah Tehrani, R.Sadeghi, Volumetric and acoustic properties of aqueous carbohydrate-polymer solutions, J. Chem. Eng. Data 61 (9) (2016) 3144-3156. [63] X.X. Zhao, G.Q. Zhu, L.Y. Jiao, F.L. Yu, C.X.Xie, Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study, Chem. Eur. J. 24 (43) (2018) 11021-11032. [64] B. Thapa, D. Beckett, J. Erickson, K.Raghavachari, Theoretical study of protein-ligand interactions using the molecules-in-molecules fragmentation-based method, J. Chem. Theory Comput. 14 (10) (2018) 5143-5155. [65] J.A. López-López, R. Ayala, Assessment of the performance of commonly used DFT functionals vs. MP2 in the study of IL-Water, IL-Ethanol and IL-(H2O)3 clusters, J. Mol. Liq. 220 (2016) 970-982. [66] H.F. Xu, Y. Kong, J.J. Peng, W.X. Wang, B.Li, Mechanism of deep eutectic solvent delignification: insights from molecular dynamics simulations, ACS Sustainable Chem. Eng. 9 (20) (2021) 7101-7111. |