[1] T.H. Oh, Carbon capture and storage potential in a coal-fired plant in Malaysia-A review, Renew. Sust. Energ. Rev. 14(9) (2010) 2697-2709. [2] S. Inoue, T. Itakura, T. Nakagaki, Y. Furukawa, S. Hiroshi, Y. Yasuro, Experimental study on CO2 solubility in aqueous piperazine/alkanolamines solutions at stripper conditions, Energy Procedia 37(2013) 1751-1759. [3] A.D. Ebner, A.R. James, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries, Sep. Sci. Technol. 44(6) (2009) 1273-1421. [4] S. Choi, J.H. Drese, W.J. Christopher, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem 2(9) (2009) 796-854. [5] M.P. Suh, Y.E. Cheon, E.Y. Lee, Syntheses and functions of porous metallosupramolecular networks, Cood. Chem. Rev. 252(8-9) (2008) 1007-1026. [6] L. Raynal, P.A. Bouillon, A. Gomez, P. Broutin, From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171(3) (2011) 742-752. [7] S. Garg, G. Murshid, F.S. Mjalli, W. Ahmad, Physical properties of aqueous blend of diethanolamine and sarcosine:experimental and correlation study, Chem. Pap. 71(10) (2017) 1799-1807. [8] G. Murshid, H. Ghaedi, M. Ayoub, W. Ahmad, Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture, J. Mol. Liq. 250(2018) 162-170. [9] D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, C.A. Angell, Energy applications of ionic liquids, Energy Environ. Sci. 7(1) (2014) 232-250. [10] F.A. Chowdhury, H. Okabe, H. Yamada, M. Onoda, Y. Fujioka, Synthesis and selection of hindered new amine absorbents for CO2 capture, Energy Procedia 4(2011) 201-208. [11] B. Peric, J. Sierra, E. Martí, R. Cruañas, M.A. Garau, J. Arning, S. Stolte, (Eco) toxicity and biodegradability of selected protic and aprotic ionic liquids, J. Hazard. Mater. 261(2013) 99-105. [13] M. Smiglak, W.M. Reichert, J.D. Holbrey, J.S. Wilkes, L. Sun, J.S. Thrasher, R.D. Rogers, Combustible ionic liquids by design:is laboratory safety another ionic liquid myth? ChemComm (24) (2006) 2554-2556. [14] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, ChemComm 1(2003) 70-71. [15] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114(21) (2014) 11060-11082. [16] X. Li, M. Hou, B. Han, X. Wang, L. Zou, Solubility of CO2 in a choline chloride+urea eutectic mixture, J. Chem. Eng. Data 53(2) (2008) 548-550. [17] R.B. Leron, A. Caparanga, M.H. Li, Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T=303.15-343.15 K and moderate pressures, J. Taiwan Inst. Chem. Eng. 44(6) (2013) 879-885. [18] M. Francisco, A. Bruinhorst, L.F. Zubeir, C.J. Peters, M.C. Kroon, A new low transition temperature mixture (LTTM) formed by choline chloride+lactic acid:Characterization as solvent for CO2 capture, Fluid Phase Equilib. 340(2013) 77-84. [19] L.L. Sze, S. Pandey, S. Ravula, S. Pandey, H. Zhao, G.A. Baker, S.N. Baker, Ternary deep eutectic solvents tasked for carbon dioxide capture, ACS Sustain. Chem. Eng. 2(9) (2014) 2117-2123. [20] E. Ali, M.K. Hadj-Kali, S. Mulyono, Solubility of CO2 in deep eutectic solvents:Experiments and modelling using the Peng-Robinson equation of state, Chem. Eng. Res. Des. 92(10) (2014) 1898-1906. [21] B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, Equimolar CO2 absorption by anionfunctionalized ionic liquids, J. Am. Chem. Soc. 132(7) (2010) 2116-2117. [22] Y. Zhang, S. Zhang, X. Lu, Q. Zhou, W. Fan, X. Zhang, Dual amino-functionalised phosphonium ionic liquids for CO2 capture, Chem. Eur. J. 15(12) (2009) 3003-3011. [23] S. Saravanamurugan, A.J. Kunov-Kruse, R. Fehrmann, A. Riisager, Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2, Chem Sus Chem 7(3) (2014) 897-902. [24] C. Wang, X. Luo, H. Luo, D.E. Jiang, H. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. 123(21) (2011) 5020-5024. [25] X. Luo, Y. Guo, F. Ding, Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions, Angew. Chem. 126(27) (2014) 7173-7177. [26] J. Zhang, C. Jia, H. Dong, J. Wang, X. Zhang, S. Zhang, A novel dual aminofunctionalized cation-tethered ionic liquid for CO2 capture, Ind. Eng. Chem. Res. 52(17) (2013) 5835-5841. [27] T.J. Trivedi, J.H. Lee, H.J. Lee, H.J. Lee, Y.K. Jeong, J.W. Choi, Deep eutectic solvents as attractive media for CO2 capture, Green Chem. 18(9) (2016) 2834-2842. [28] W.M. Budzianowski, Energy Efficient Solvents for CO2 Capture by Gas-liquid Absorption, Springer, 2017. [29] M.K. Park, O.C. Sandall, Solubility of carbon dioxide and nitrous oxide in 50 mass methyldiethanolamine, J. Chem. Eng. Data 46(1) (2001) 166-168. [30] H. Ghaedi, M. Ayoub, S. Sufian, CO2 capture with the help of Phosphonium-based deep eutectic solvents, J. Mol. Liq. 243(2017) 564-571. [31] B. Jibril, F. Mjalli, J. Naser, New tetrapropylammonium bromide-based deep eutectic solvents:synthesis and characterizations, J. Mol. Liq. 199(2014) 462-469. [32] F. Harris, K.A. Kurnia, M.I.A. Mutalib, Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption, J. Chem. Eng. Data 54(1) (2009) 144-147. [33] M.H. Jenab, M.A. Abdi, S.H. Najibi, Solubility of carbon dioxide in aqueous mixtures of N-methyldiethanolamine plus piperazine plus sulfolane, J. Chem. Eng. Data 50(2) (2005) 583-586. [34] K. Shahbaz, F.S. Mjalli, G. Vakili-Nezhaad, Thermogravimetric measurement of deep eutectic solvents vapor pressure, J. Mol. Liq. 222(2016) 61-66. [35] B.K. Mondal, S.S. Bandyopadhyay, A.N. Samanta, VLE of CO2 in aqueous sodium glycinate solution-new data and modeling using Kent-Eisenberg model, Int. J. Greenh. Gas Con. 36(2015) 153-160. [36] F.S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Monoethanolamine-based deep eutectic solvents, their synthesis and characterization, Fluid Phase Equilib. 448(2017) 30-40. [37] J. Park, S.J. Yoon, H. Lee, J.H. Yoon, J.G. Shim, J.K. Lee, H.M. Eum, Density, viscosity, and solubility of CO2 in aqueous solutions of 2-Amino-2-hydroxymethyl-1, 3-propanediol, J. Chem. Eng. Data 47(4) (2002) 970-973. [38] K.P. Shen, M.H. Li, Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37(1) (1992) 96-100. [39] M.H. Shafie, R. Yusof, C.Y. Gan, Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties, J. Mol. Liq. 288(2019), 111081.. [40] A.P. Abbott, G. Capper, S. Gray, Design of improved deep eutectic solvents using hole theory, ChemPhysChem 7(4) (2006) 803-806. [41] G. Murshid, F.S. Mjalli, J. Naser, S. Al-Zakwani, A. Hayyan, Novel diethanolamine based deep eutectic mixtures for carbon dioxide (CO2) capture:Synthesis and characterisation, Phys. Chem. Liq. (2018) 473-490. [42] R.B. Leron, M.H. Li, Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent, Thermochim. Acta 551(2013) 14-19. [43] P. Singh, G.F. Versteeg, Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents, Process Saf. Environ. 86(5) (2008) 347-359. [44] H. Machida, H. Yamada, Y. Fujioka, CO2 solubility measurements and modeling for tertiary diamines, J. Chem. Eng. Data 60(3) (2015) 814-820. [45] R.B. Leron, A.N. Soriano, M.H. Li, Densities and refractive indices of the deep eutectic solvents (choline chloride+ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K, J. Taiwan Inst. Chem. E. 43(4) (2012) 551-557. |