[1] P.H. Jin, Z. Zhang, I. Mostafa, C.Y. Zhao, W.T. Ji, W.Q. Tao, Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube, Int. J. Heat Mass Transf. 133 (2019) 96-106. [2] W.T. Ji, C.Y. Zhao, D.C. Zhang, S. Yoshioka, Y.L. He, W.Q. Tao, Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle, Int. J. Heat Mass Transf. 92 (2016) 1171-1181. [3] Y. Zheng, X.H. Ma, Y. Li, R. Jiang, K. Wang, Z. Lan, Q.Q. Liang, Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density, Appl. Therm. Eng. 111 (2017) 1548-1556. [4] S.Q. Shen, Y.L. Guo, L.Y. Gong, Analysis of heat transfer critical point in LT-MEE desalination plant, Desalination 432 (2018) 64-71. [5] Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination processes, Desalin. Water Treat. 54 (6) (2015) 1526-1541. [6] I. Roy, A. Bhushani, C. Anandharamakrishnan, Techniques for the preconcentration of milk, Handbook of Drying for Dairy Products, John Wiley & Sons, Chichester, 2017, 23-41. [7] S. Abolfathi, A. Mirabdolah Lavasani, P. Mobedi, K. Salehi Afshar, Experimental study on flow around a tube in mixed tube bundles comprising cam-shaped and circular cylinders in in-line arrangement, Int. J. Therm. Sci. 163 (2021) 106812. [8] C.H. Qi, H.J. Feng, H.Q. Lv, C. Miao, Numerical and experimental research on the heat transfer of seawater desalination with liquid film outside elliptical tube, Int. J. Heat Mass Transf. 93 (2016) 207-216. [9] T.T. Wang, G.L. Ding, T. Ren, J. Chen, H. Pu, A mathematical model of floating LNG spiral-wound heat exchangers under rolling conditions, Appl. Therm. Eng. 99 (2016) 959-969. [10] G.M. Zhang, X.L. Leng, N.X. Zhou, Y.P. Shi, L.M. Li, Flow and heat transfer characteristics around egg-shaped tube, J. Hydrodyn. Ser. B 27 (1) (2015) 76-84. [11] M.J. Li, Y. Lu, S.J. Zhang, Y.H. Xiao, A numerical study of effects of counter-current gas flow rate on local hydrodynamic characteristics of falling films over horizontal tubes, Desalination 383 (2016) 68-80. [12] Z. Ramadan, C.W. Park, Hydrodynamic behavior of liquid falling film over horizontal tubes: Effect of hydrophilic circular surface on liquid film thickness and heat transfer, Case Stud. Therm. Eng. 24 (2021) 100821. [13] A. Karmakar, S.Acharya, Wettability effects on falling film flow and heat transfer over horizontal tubes in jet flow mode, J. Heat Transf. 142 (12) (2020) 122301. [14] A. Karmakar, S. Acharya, Numerical simulation of falling film sensible heat transfer over round horizontal tubes, Int. J. Heat Mass Transf. 190 (2022) 122727. [15] C.Y. Zhao, Z.L. Yao, D. Qi, W.T. Ji, A.G. Li, W.Q. Tao, Numerical investigation of tube bundle arrangement effect on falling film fluid flow and heat transfer, Appl. Therm. Eng. 201 (2022) 117828. [16] X.S. Chen, J. Wang, T. Lu, J. Sheng, X. Chen, Three-dimensional film thickness distribution of horizontal tube falling film with droplet and sheet flow, Int. J. Multiph. Flow 148 (2022) 103933. [17] X. Lu, G.P. Zhang, Y.T. Chen, Q.W. Wang, M. Zeng, Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers, Appl. Therm. Eng. 89 (2015) 1104-1116. [18] J.R. Li, H.T. Hu, H.X. Wang, Numerical investigation on flow pattern transformation and heat transfer characteristics of two-phase flow boiling in the shell side of LNG spiral wound heat exchanger, Int. J. Therm. Sci. 152 (2020) 106289. [19] A. Austegard, M. Bandopadhyay, S.W. Løvseth, A. Brunsvold, Flow pattern transitions in and hysteresis effects of falling film flow over horizontal tubes related to LNG heat exchangers, Energy Procedia 64 (2015) 23-32. [20] C.Z. Sun, L. Liu, Y.X. Li, X.W. Cao, H. Han, Experimental and numerical study on the falling film flow characteristics outside circular tube applied in floating liquefied natural gas (FLNG) under offshore conditions, Int. J. Heat Fluid Flow 92 (2021) 108883. [21] H. Hou, Q.C. Bi, H. Ma, G. Wu, Distribution characteristics of falling film thickness around a horizontal tube, Desalination 285 (2012) 393-398. [22] Y.T. Lee, S.H. Hong, C.B. Dang, L.H. Chien, L.W. Chang, A.S. Yang, Heat transfer characteristics of obliquely dispensed evaporating falling films on an elliptic tube, Int. J. Heat Mass Transf. 132 (2019) 238-248. [23] Z.H. Wan, Y.Z. Li, S. Wang, A comprehensive simulation and optimization on heat transfer characteristics of subcooled seawater falling film around elliptical tubes, Appl. Therm. Eng. 189 (2021) 116675. [24] H. Han, S.W. Wang, Y.X. Li, C.Z. Sun, 3-D Numerical study for the film thickness distribution of n-pentane falling film flow around the curved egg-shaped tube bundle, Chem. Eng. Res. Des. 156 (2020) 156-170. [25] R. Deeb, The effect of angle of attack on heat transfer characteristics of drop-shaped tube, Int. J. Heat Mass Transf. 183 (2022) 122115. [26] R. Deeb, Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow and heat transfer of staggered drop-shaped tubes bundle, Int. J. Heat Mass Transf. 183 (2022) 122123. [27] L. Pu, Q. Li, X.Y. Shao, L. Ding, Y.Z. Li, Effects of tube shape on flow and heat transfer characteristics in falling film evaporation, Appl. Therm. Eng. 148 (2019) 412-419. [28] Y.S. Zhang, D.W. Wang, Y. Liu, M. Tang, S.F. Zhang, Distribution characteristics of falling film thickness around a horizontal corrugated tube, Int. J. Heat Mass Transf. 154 (2020) 119773. [29] C.H. Qi, X. Han, H.Q. Lv, Y.L. Xing, K.X. Han, Experimental study of heat transfer and scale formation of spiral grooved tube in the falling film distilled desalination, Int. J. Heat Mass Transf. 119 (2018) 654-664. [30] W. Li, X.Y. Wu, Z. Luo, R.L. Webb, Falling water film evaporation on newly-designed enhanced tube bundles, Int. J. Heat Mass Transf. 54 (13-14) (2011) 2990-2997. [31] P.H. Jin, Z. Zhang, I. Mostafa, C.Y. Zhao, W.T. Ji, W.Q. Tao, Experimental study of falling film evaporation in tube bundles of doubly-enhanced, horizontal tubes, Appl. Therm. Eng. 170 (2020) 115006. [32] L.C. Luo, G.M. Zhang, J.H. Pan, M.C. Tian, Flow and heat transfer characteristics of falling water film on horizontal circular and non-circular cylinders, J. Hydrodyn. Ser. B 25 (3) (2013) 404-414. [33] X.J. He, J. Wang, Z.L. Li, R. Wan, J. Hu, Z.M. Yang, Numerical simulation on shell-side flow pattern transition and heat transfer of non-azeotropic refrigerant mixture, Appl. Therm. Eng. 214 (2022) 118917. [34] E.W. Lemmon, M.L. Huber, M.O. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.1, Standard Reference Data Program, National Institute of Standards and Technology, NIST NSRDS, 2010. [35] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335-354. [36] W.H. Lee, Pressure iteration scheme for two-phase flow modeling, Multi-Phase Transp. Fundam. React. Saf. Appl. 1 (1980) 407-431. |