[1] A. Bhatnagar, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater, Environ. Technol. 32 (3-4) (2011) 231-249. [2] T.S.Y. Choong, T.G. Chuah, Y. Robiah, F.L.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: An overview, Desalination 217 (1-3) (2007) 139-166. [3] F. Lara, L. Cornejo, J. Yáñez, J. Freer, H.D. Mansilla, Solar-light assisted removal of arsenic from natural waters: Effect of iron and citrate concentrations, J. Chem. Technol. Biotechnol. 81 (7) (2006) 1282-1287. [4] D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents: A critical review, J. Hazard. Mater. 142 (1-2) (2007) 1-53. [5] V.K. Sharma, M. Sohn, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int. 35 (4) (2009) 743-759. [6] A.H. Smith, M.L. Biggs, L. Moore, R. Haque, C. Steinmaus, J. Chung, A. Hernandez, P. Lopipero, Cancer risks from arsenic in drinking water: Implications for drinking water standards, Arsen. Expo. Heal. Eff. III (1999) 191-199. [7] J.F. Ferguson, J. Gavis, A review of the arsenic cycle in natural waters, Water Res. 6 (11) (1972) 1259-1274. [8] X.G. Meng, G.P. Korfiatis, S. Bang, K.W. Bang, Combined effects of anions on arsenic removal by iron hydroxides, Toxicol. Lett. 133 (1) (2002) 103-111. [9] N.K. Das, S.R. Sengupta, Arsenicosis: Diagnosis and treatment, Indian J. Dermatol. Venereol. Leprol. 74 (6) (2008) 571-581. [10] B. An, Q.Q. Liang, D.Y. Zhao, Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles, Water Res. 45 (5) (2011) 1961-1972. [11] M. Habuda-Stanić, M. Nujić, Ž. Romić, A. Lončarić, M. Ergović Ravančić, E. Kralj, Arsenic preoxidation and its removal from groundwater using iron coagulants, Desalination Water Treat. 56 (8) (2015) 2105-2113. [12] M.S. Oncel, A. Muhcu, E. Demirbas, M. Kobya, A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng. 1 (4) (2013) 989-995. [13] X.H. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci. 97-98 (2014) 17-23. [14] P. Xu, M. Capito, T.Y. Cath, Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate, J. Hazard. Mater. 260 (2013) 885-891. [15] Y.F. Feng, H. Zhou, G.H. Liu, J. Qiao, J.H. Wang, H.Y. Lu, L.Z. Yang, Y.H. Wu, Methylene blue adsorption onto Swede rape straw (Brassica napus L.) modified by tartaric acid: Equilibrium, kinetic and adsorption mechanisms, Bioresour. Technol. 125 (2012) 138-144. [16] B.J. Massie, T.H. Sanders, L.L. Dean, Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption, J. Food Process. Eng. 38 (6) (2015) 555-561. [17] S. Luther, N. Borgfeld, J. Kim, J.G. Parsons, Removal of arsenic from aqueous solution: A study of the effects of pH and interfering ions using iron oxide nanomaterials, Microchem. J. 101 (2012) 30-36. [18] J. Zhu, M. Pigna, V. Cozzolino, A.G. Caporale, A. Violante, Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands, J. Hazard. Mater. 189 (1-2) (2011) 564-571. [19] Y.W. Guo, Z.L. Zhu, Y.L. Qiu, J.F. Zhao, Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions, J. Hazard. Mater. 239-240 (2012) 279-288. [20] Z.L. Zhang, H.J. Luo, X.L. Jiang, Z.J. Jiang, C. Yang, Synthesis of reduced graphene oxide-montmorillonite nanocomposite and its application in hexavalent chromium removal from aqueous solutions, RSC Adv. 5 (59) (2015) 47408-47417. [21] C. Zhang, Y.F. Li, X.M. Tian, Research on the treatment for wastewater containing arsenic by absorption on activated carbon, Ind. Saf. Environ. Prot. 35 (12) (2009) 6-7, 10 (in Chinese). [22] P. Brandhuber, G. Amy, Arsenic removal by a charged ultrafiltration membrane—Influences of membrane operating conditions and water quality on arsenic rejection, Desalination 140 (1) (2001) 1-14. [23] I. Ali, New generation adsorbents for water treatment, Chem. Rev. 112 (10) (2012) 5073-5091. [24] R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: Air, soil, and water, Environ. Sci. Pollut. Res. Int. 23 (14) (2016) 13754-13788. [25] M. Jang, J.S. Hwang, S.I. Choi, J.K. Park, Remediation of arsenic-contaminated soils and washing effluents, Chemosphere 60 (3) (2005) 344-354. [26] J.A. Wilkie, J.G. Hering,, Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes, Colloids Surf. A Physicochem. Eng. Aspects 107 (1996) 97-110. [27] G.A. Waychunas, C.C. Fuller, B.A. Rea, J.A. Davis, Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results, Geochim. Cosmochim. Acta 60 (10) (1996) 1765-1781. [28] G.A. Waychunas, B.A. Rea, C.C. Fuller, J.A. Davis, Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate, Geochim. Cosmochim. Acta 57 (10) (1993) 2251-2269. [29] D. Pokhrel, T. Viraraghavan, Arsenic removal from an aqueous solution by modified A. Niger biomass: Batch kinetic and isotherm studies, J. Hazard. Mater. 150 (3) (2008) 818-825. [30] P. Mondal, C. Balomajumder, B. Mohanty, A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: Effects of shaking time, pH and temperature, J. Hazard. Mater. 144 (1-2) (2007) 420-426. [31] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Frankl. Inst. 183 (1) (1917) 102-105. [32] A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem. 3 (1) (2012) 38-45. [33] C.H. Li, W. Xu, D.M. Jia, X.W. Liu, Removal of arsenic from drinking water by using the Zr-loaded resin, J. Chem. Eng. Data 58 (2) (2013) 427-435. [34] D. Nandi, K. Gupta, A.K. Ghosh, A. De, S. Banerjee, U.C. Ghosh, Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: Synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution, J. Nanoparticle Res. 14 (12) (2012) 1-14. [35] A. Gupta, M. Yunus, N. Sankararamakrishnan, Zerovalent iron encapsulated chitosan nanospheres—A novel adsorbent for the removal of total inorganic arsenic from aqueous systems, Chemosphere 86 (2) (2012) 150-155. [36] M.K. Ghosh, G.E.J. Poinern, T.B. Issa, P. Singh, Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method, Korean J. Chem. Eng. 29 (1) (2012) 95-102. [37] T. Zhang, D.D. Sun, Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration, Chem. Eng. J. 225 (2013) 271-279. [38] H. Park, N.V. Myung, H. Jung, H. Choi, As(V) remediation using electrochemically synthesized maghemite nanoparticles, J. Nanoparticle Res. 11 (8) (2008) 1981-1989. [39] J.M.R. Gallo, C. Bisio, G. Gatti, L. Marchese, H.O. Pastore, Physicochemical characterization and surface acid properties of mesoporous[Al]-SBA-15 obtained by direct synthesis, Langmuir 26 (8) (2010) 5791-5800. [40] X.B. Luo, C. Wang, S. Luo, R. Dong, X. Tu, G. Zeng, Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites, Chem. Eng. J. 187 (2012) 45-52. [41] M.G. Alam, S. Tokunaga, T. Maekawa, Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate, Chemosphere 43 (8) (2001) 1035-1041. [42] C.C. Fuller, J.A. Davis, G.A. Waychunas, Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation, Geochim. Cosmochim. Acta 57 (10) (1993) 2271-2282. [43] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small Weinheim Der Bergstrasse Ger. 6 (6) (2010) 711-723. [44] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J.X. Huang, Graphene oxide sheets at interfaces, J. Am. Chem. Soc. 132 (23) (2010) 8180-8186. |