[1] P. Bricard, L.Friedel, Two-phase jet dispersion, J. Hazard. Mater. 59 (2-3) (1998) 287-310. [2] A.D. Galeev, E.V. Starovoytova, S.I.Ponikarov, Numerical simulation of the consequences of liquefied ammonia instantaneous release using FLUENT software, Process. Saf. Environ. Prot. 91 (3) (2013) 191-201. [3] Anjana, N.S., Amarnath, A., Nair, M.V.H., Toxic hazards of ammonia release and population vulnerability assessment using geographical information system, J. Environ. Manag. 210 (2018) 201-209. [4] T. Baalisampang, R. Abbassi, V. Garaniya, F. Khan, M.Dadashzadeh, Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG, Process. Saf. Environ. Prot. 128 (2019) 259-272. [5] J.L. Orozco, J. Van Caneghem, L. Hens, L. González, R. Lugo, S. Díaz, I.Pedroso, Assessment of an ammonia incident in the industrial area of Matanzas, J. Clean. Prod. 222 (2019) 934-941. [6] S.R. Hanna, O.R. Hansen, M. Ichard, D.Strimaitis, CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas, Atmos. Environ. 43 (2) (2009) 262-270. [7] Brambilla, S. and Manca, D., The Viareggio LPG railway accident: Event reconstruction and modeling, J. Hazard. Mater. 182 (1-3) (2010) 346-357. [8] D. Manca, S.Brambilla, Complexity and uncertainty in the assessment of the Viareggio LPG railway accident, J. Loss Prev. Process. Ind. 23 (5) (2010) 668-679. [9] G. Landucci, A. Tugnoli, V. Busini, M. Derudi, R. Rota, V.Cozzani, The viareggio LPG accident: Lessons learnt, J. Loss Prev. Process. Ind. 24 (4) (2011) 466-476. [10] G. Landucci, G. Antonioni, A. Tugnoli, S. Bonvicini, M. Molag, V.Cozzani, HazMat transportation risk assessment: A revisitation in the perspective of the Viareggio LPG accident, J. Loss Prev. Process. Ind. 49 (2017) 36-46. [11] X. Liu, A. Godbole, C. Lu, G. Michal, P.Venton, Study of the consequences of CO2 released from high-pressure pipelines, Atmos. Environ. 116 (2015) 51-64. [12] Yajun, Deng, A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain, J. Hazard. Mater. 342 (2018) 418-428. [13] L. Teng, Y.X. Li, Q.H. Hu, D.T. Zhang, X. Ye, S.W. Gu, C.L.Wang, Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases, Energy 157 (2018) 806-814. [14] C.L. Wang, Y.X. Li, L. Teng, S.W. Gu, Q.H. Hu, D.T. Zhang, X. Ye, J.H.Wang, Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines, Exp. Therm. Fluid Sci. 105 (2019) 77-84. [15] Xiong, Liu, Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state, Appl. Energy 126 (2014) 56-68. [16] C.J. Wareing, M. Fairweather, S.A.E.G. Falle, R.M.Woolley, Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications—part I. Validation, Int. J. Greenh. Gas Control 42 (2015) 701-711. [17] Preeti, Joshi, Consequence analysis of accidental release of supercritical carbon dioxide from high pressure pipelines, Int. J. Greenh. Gas Control 55 (2016) 166-176. [18] G. A, Venetsanos, Release and dispersion modeling of cryogenic under-expanded hydrogen jets, Int. J. Hydrog. Energy 42 (11) (2017) 7672-7682. [19] H.W.M. Witlox, M. Fernandez, M. Harper, J.Stene, Modelling and validation of atmospheric expansion and near-field dispersion for pressurised vapour or two-phase releases, J. Loss Prev. Process. Ind. 48 (2017) 331-344. [20] S.G. Giannissi, A.G.Venetsanos, Study of key parameters in modeling liquid hydrogen release and dispersion in open environment, Int. J. Hydrog. Energy 43 (1) (2018) 455-467. [21] Liang, Pu, Numerical investigation on the difference of dispersion behavior between cryogenic liquid hydrogen and methane, Int. J. Hydrog. Energy 44 (39) (2019) 22368-22379. [22] R.M. Woolley, M. Fairweather, C.J. Wareing, C. Proust, J. Hebrard, D. Jamois, V.D. Narasimhamurthy, I.E. Storvik, T. Skjold, S.A.E.G. Falle, S. Brown, H. Mahgerefteh, S. Martynov, S.E. Gant, D.M. Tsangaris, I.G. Economou, G.C. Boulougouris, N.I.Diamantonis, An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain, Int. J. Greenh. Gas Control 27 (2014) 221-238. [23] R.M. Woolley, M. Fairweather, C.J. Wareing, S.A.E.G. Falle, C. Proust, J. Hebrard, D.Jamois, Experimental measurement and Reynolds-averaged Navier-Stokes modelling of the near-field structure of multi-phase CO2 jet releases, Int. J. Greenh. Gas Control 18 (2013) 139-149. [24] Alberto, Mazzoldi, Assessing the risk for CO2 transportation within CCS projects, CFD modelling, Int. J. Greenh. Gas Control 5 (4) (2011) 816-825. [25] L, Engelmeier, Investigation of superheated liquid carbon dioxide jets for cutting applications, J. Supercrit. Fluids 132 (2018) 33-41. [26] C.J. Wareing, M. Fairweather, S.A.E.G. Falle, R.M. Woolley, A.M.E.Ward, High pressure CO2 CCS pipelines: Comparing dispersion models with multiple experimental datasets, Int. J. Greenh. Gas Control 54 (2016) 716-726. [27] Ahmin, Park, Numerical modeling of rapid depressurization of a pressure vessel containing two-phase hydrocarbon mixture, Process. Saf. Environ. Prot. 113 (2018) 343-356. [28] Pham, L.H.H.P. and Rusli, R., A review of experimental and modelling methods for accidental release behaviour of high-pressurised CO2 pipelines at atmospheric environment, Process. Saf. Environ. Prot. 104 (2016) 48-84. [29] X.L. Guo, X.Q. Yan, J.L. Yu, Y.C. Zhang, S.Y. Chen, H. Mahgerefteh, S. Martynov, A. Collard, C.Proust, Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline, Appl. Energy 178 (2016) 189-197. [30] X.L. Guo, X.Q. Yan, J.L. Yu, Y. Yang, Y.C. Zhang, S.Y. Chen, H. Mahgerefteh, S. Martynov, A.Collard, Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline, Energy 118 (2017) 1066-1078. [31] Rex, Britter, Toxic industrial chemical (TIC) source emissions modeling for pressurized liquefied gases, Atmos. Environ. 45 (1) (2011) 1-25. [32] C.J. Wareing, R.M. Woolley, M. Fairweather, S.A.E.G.Falle, A composite equation of state for the modeling of sonic carbon dioxide jets in carbon capture and storage scenarios, AIChE J. 59 (10) (2013) 3928-3942. [33] J.T. Lopes, A.Z. Francesconi, S.S.V.Vianna, Modelling of source term from accidental release of pressurised CO2, Process. Saf. Environ. Prot. 113 (2018) 88-96. [34] R.K. Calay, A.E. Holdo, Modelling the dispersion of flashing jets using CFD, J. Hazard. Mater. 154 (1-3) (2008) 1198-1209. [35] H. Mahgerefteh, P. Saha, I.G.Economou, Fast numerical simulation for full bore rupture of pressurized pipelines, AIChE J. 45 (6) (1999) 1191-1201. [36] H. Mahgerefteh, S.M.A.Wong, A numerical blowdown simulation incorporating cubic equations of state, Comput. Chem. Eng. 23 (9) (1999) 1309-1317. [37] X.J. Zhou, K. Li, R. Tu, J.X. Yi, Q.Y. Xie, X. Jiang, A modelling study of the multiphase leakage flow from pressurised CO2 pipeline, J. Hazard. Mater. 306 (2016) 286-294. [38] J. Peter, Kay, Sub-cooled and flashing liquid jets and droplet dispersion II. Scaled experiments and derivation of droplet size correlations, J. Loss Prev. Process. Ind. 23 (6) (2010) 849-856. [39] G. Polanco, A.E. Holdø, G. Munday, General review of flashing jet studies, J. Hazard. Mater. 173 (1-3) (2010) 2-18. [40] H.W.M. Witlox, M. Harper, A. Oke, P.J. Bowen, P.Kay, Sub-cooled and flashing liquid jets and droplet dispersion I. Overview and model implementation/validation, J. Loss Prev. Process. Ind. 23 (6) (2010) 831-842. [41] S.G. Giannissi, A.G. Venetsanos, N. Markatos, J.G.Bartzis, CFD modeling of hydrogen dispersion under cryogenic release conditions, Int. J. Hydrog. Energy 39 (28) (2014) 15851-15863. [42] Yuyin, Zhang, Quantitative observation on breakup of superheated liquid jet using transparent slit nozzle, Exp. Therm. Fluid Sci. 63 (2015) 84-90. [43] J.T, Allen. Laser-based measurements in two-phase flashing propane jets. Part two: Droplet size distribution, J. Loss Prev. Process. Ind. 11 (5) (1998) 299-306. [44] P.L. Eggins, D.A.Jackson, Laser-Doppler velocity measurements in an under-expanded free jet, J. Phys. D: Appl. Phys. 7 (14) (1974) 1894-1906. [45] S.E. Gant, V.D. Narasimhamurthy, T. Skjold, D. Jamois, C.Proust, Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage, J. Loss Prev. Process. Ind. 32 (2014) 286-298. |