[1] L. Chen, X.M. Qiu, Z.M. Bai, L.Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework, J. Energy Chem. 52 (2021) 210-217. [2] X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework, Energy Environ. Sci. 12 (3) (2019) 938-944. [3] Q.Y. Han, S.Q. Wang, W.H. Kong, B. Ji, H.H. Wang, Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries, Chin. J. Chem. Eng. 54 (2023) 257-263. [4] T. Wei, J.H. Lu, P. Zhang, G. Yang, C. Sun, Y.Y. Zhou, Q.C. Zhuang, Y.F. Tang, Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett. (2022) 107947. [5] M. Zhang, T. Wei, A.M. Zhang, S.L. Li, F.C. Shen, L.Z. Dong, D.S. Li, Y.Q. Lan, Polyoxomolybdate-polypyrrole/reduced graphene oxide nanocomposite as high-capacity electrodes for lithium storage, ACS Omega 2 (9) (2017) 5684-5690. [6] H. Jeong, D. Na, J. Baek, S. Kim, S. Mamidi, C.R. Lee, H.K. Seo, I. Seo, Synthesis of superionic conductive Li1+x+yAlxSiyTi2-xP3-yO12 solid electrolytes, Nanomaterials (Basel) 12 (7) (2022) 1158. [7] M.K. Tufail, N. Ahmad, L. Yang, L. Zhou, M.A. Naseer, R.J. Chen, W. Yang, A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries, Chin. J. Chem. Eng. 39 (2021) 16-36. [8] Z.W. Lei, J.L. Shen, W.D. Zhang, Q.R. Wang, J. Wang, Y.H. Deng, C.Y. Wang, Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes, Nano Res. 13 (8) (2020) 2259-2267. [9] E.Q. Zhao, Y.D. Guo, Y.R. Liu, S.Q. Liu, G.R. Xu, Nanostructured zeolitic imidazolate framework-67 reinforced poly(ethylene oxide) composite electrolytes for all solid state Lithium ion batteries, Appl. Surf. Sci. 573 (2022) 151489. [10] Q. Yang, A. Wang, J. Luo, W. Tang, Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries, Chin. J. Chem. Eng. 43 (2022) 202-215. [11] Z.H. Zhang, T. Wei, J.H. Lu, Q.M. Xiong, Y.H. Ji, Z.Y. Zhu, L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: a review, Int J Miner Metall Mater 28 (10) (2021) 1565-1583. [12] Q. Zhang, T. Wei, J.H. Lu, C. Sun, Y.Y. Zhou, M.T. Wang, Y. Liu, B.B. Xiao, X.Y. Qiu, S.D. Xu, The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem. 926 (2022) 116935. [13] L. Chen, Y.T. Li, S.P. Li, L.Z. Fan, C.W. Nan, J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy 46 (2018) 176-184. [14] Y. Jiang, X.M. Yan, Z.F. Ma, P. Mei, W. Xiao, Q.L. You, Y. Zhang, Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries, Polymers 10 (11) (2018) 1237. [15] J.Z. Sheng, Q. Zhang, C.B. Sun, J.X. Wang, X.W. Zhong, B. Chen, C. Li, R.H. Gao, Z.Y. Han, G.M.Zhou, Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries, Adv. Funct. Mater. 32 (40) (2022) 2203272. [16] M.Z. Liu, B.Y. Jin, Q.H. Zhang, X.L. Zhan, F.Q. Chen, High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane, J. Alloys Compd. 742 (2018) 619-628. [17] Z.Y. Hu, Y.F. Zhang, X.Y. Long, W. Bao, Y. Zhang, W.Z. Fan, H.S. Cheng, Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries, J. Membr. Sci. 657 (2022) 120666. [18] Z.Y. Huang, R.A. Tong, J. Zhang, L.H. Chen, C.G. Wang, Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte, J. Power Sources 451 (2020) 227797. [19] C. Li, Y. Huang, C. Chen, X.S. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries, Appl. Surf. Sci. 563 (2021) 150248. [20] Y.Y. Wang, K.X. Huang, P.X. Zhang, H.W. Li, H.W. Mi, PVDF-HFP based polymer electrolytes with high Li+ transference number enhancing the cycling performance and rate capability of lithium metal batteries, Appl. Surf. Sci. 574 (2022) 151593. [21] T. Wei, Z.M. Wang, M. Zhang, Q. Zhang, J.H. Lu, Y.Y. Zhou, C. Sun, Z.D. Yu, Y. Wang, M. Qiao, S. Qin, Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun. 31 (2022) 103518. [22] T. Wei, Z.M. Wang, Q. Zhang, Y.Y. Zhou, C. Sun, M.T. Wang, Y. Liu, S.J. Wang, Z.D. Yu, X.Y. Qiu, S.D. Xu, S. Qin, Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review, CrystEngComm 24 (28) (2022) 5014-5030. [23] X.Y. Yang, T. Wei, J.S. Li, N. Sheng, P.P. Zhu, J.Q. Sha, T. Wang, Y.Q. Lan, Polyoxometalate-incorporated metallapillararene/metallacalixarene metal-organic frameworks as anode materials for lithium ion batteries, Inorg. Chem. 56 (14) (2017) 8311-8318. [24] Q. Huang, T. Wei, M. Zhang, L.Z. Dong, A.M. Zhang, S.L. Li, W.J. Liu, J. Liu, Y.Q. Lan, A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance, J. Mater. Chem. A 5 (18) (2017) 8477-8483. [25] C.F. Yuan, J. Li, P.F. Han, Y.Q. Lai, Z.A. Zhang, J. Liu, Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework, J. Power Sources 240 (2013) 653-658. [26] Z. Zhang, J.H. You, S.J. Zhang, C.W. Wang, Y. Zhou, J.T. Li, L. Huang, S.G.Sun, Metal organic framework nanorod doped solid polymer electrolyte with decreased crystallinity for high-performance all-solid-state lithium batteries, ChemElectroChem 7 (5) (2020) 1125-1134. [27] H.Y. Huo, B. Wu, T. Zhang, X.S. Zheng, L. Ge, T.W. Xu, X.X. Guo, X.L. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries, Energy Storage Mater. 18 (2019) 59-67. [28] Y.H. Sun, M.D. Gao, H. Li, L. Xu, Q. Xue, X.R. Wang, Y. Bai, C.Wu, Application of metal-organic frameworks to the interface of lithium metal batteries, Acta Phys. Chimica Sin. (2020) 2007048. [29] N. Angulakshmi, Y. Zhou, S. Suriyakumar, R.B. Dhanalakshmi, M. Satishrajan, S. Alwarappan, M.H. Alkordi, A.M. Stephan, Microporous metal-organic framework (MOF)-based composite polymer electrolyte (CPE) mitigating lithium dendrite formation in all-solid-state-lithium batteries, ACS Omega 5 (14) (2020) 7885-7894. [30] T. Wei, Z.H. Zhang, Q. Zhang, J.H. Lu, Q.M. Xiong, F.Y. Wang, X.P. Zhou, W.J. Zhao, X.Y. Qiu, Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int J Miner Metall Mater 28 (10) (2021) 1636-1646. [31] Q.Q. Zhang, K. Liu, F. Ding, X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res. 10 (12) (2017) 4139-4174. [32] T. Wei, Z.H. Zhang, Z.M. Wang, Q. Zhang, Y.S. Ye, J.H. Lu, Z.U. Rahman, Z.W.Zhang, Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater. 3 (9) (2020) 9428-9435. [33] Z.J. He, L. Chen, B.C. Zhang, Y.C. Liu, L.Z. Fan, Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries, J. Power Sources 392 (2018) 232-238. [34] O.I. Lebedev, F. Millange, C. Serre, G. Van Tendeloo, G.Férey, First direct imaging of giant pores of the metal-organic framework MIL-101, Chem. Mater. 17 (26) (2005) 6525-6527. [35] M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.H. Lee, J.S. Chang, S.H. Jhung, G. Férey, Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101, Angew. Chem. Int. Ed Engl. 45 (48) (2006) 8227-8231. [36] J.W. Yoon, Y.K. Seo, Y.K. Hwang, J.S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P.L. Llewellyn, C. Serre, P. Horcajada, J.M. Grenèche, A.E. Rodrigues, G. Férey, Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption, Angew. Chem. Int. Ed Engl. 49 (34) (2010) 5949-5952. [37] B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu, P. Long, S.J. Chen, X.X. Xu, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochimica Acta 210 (2016) 905-914. [38] A.E. Abdelmaoula, J. Shu, Y. Cheng, L. Xu, G. Zhang, Y. Xia, M. Tahir, P. Wu, L. Mai, Core-shell MOF-in-MOF nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries, Small Methods 5 (8) (2021) e2100508. [39] D. Han, Z.C. Zhao, W. Wang, H.J. Wang, H.L. Wang, L.L. Zheng, J. Shi, X.C. Li, Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability, Sustainable Energy Fuels 6 (19) (2022) 4528-4538. [40] W.H. Huang, X.M. Li, X.F. Yang, X.X. Zhang, H.H. Wang, H. Wang, The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries, Mater. Chem. Front. 5 (9) (2021) 3593-3613. [41] Y.B. He, Y. Qiao, Z. Chang, H.S. Zhou, The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries, Energy Environ. Sci. 12 (8) (2019) 2327-2344. [42] Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces 12 (18) (2020) 20514-20521. [43] S. Suriyakumar, M. Kanagaraj, N. Angulakshmi, M. Kathiresan, K.S. Nahm, M. Walkowiak, K. Wasiński, P. Półrolniczak, A.M. Stephan, Charge-discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks, RSC Adv. 6 (99) (2016) 97180-97186. [44] A.R. Al-Hashmi, P.F. Luckham, Using atomic force microscopy to probe the adsorption kinetics of poly(ethylene oxide) on glass surfaces from aqueous solutions, Colloids Surf. A Physicochem. Eng. Aspects 393 (2012) 66-72. [45] P.F. Wang, X.W. He, Z.C. Lv, H.C. Song, X.Y. Song, T.F. Yi, N. Xu, P. He, H.S.Zhou, Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature, Adv. Funct. Mater. (2022) 2211074. [46] C. Ma, J.F. Zhang, M.Q. Xu, Q.B. Xia, J.T. Liu, S. Zhao, L.B. Chen, A.Q. Pan, D.G. Ivey, W.F. Wei, Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries, J. Power Sources 317 (2016) 103-111. [47] Y. Liu, Q.H. Zeng, P.P. Chen, Z.F. Li, A.Q. Chen, J.Z. Guan, A.L. Wang, L.Y.Zhang, Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys. 223 (8) (2022) 2100325. [48] J. Gao, Q.J. Shao, J. Chen, Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery, J. Energy Chem. 46 (2020) 237-247. [49] C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu, P.Y. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes, Proc. Natl. Acad. Sci. USA 114 (42) (2017) 11069-11074. [50] Z.L. Li, S.X. Wang, J.K. Shi, Y. Liu, S.Y. Zheng, H.Q. Zou, Y.L. Chen, W.X. Kuang, K. Ding, L.Y. Chen, Y.Q. Lan, Y.P. Cai, Q.F. Zheng, A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery, Energy Storage Mater. 47 (2022) 262-270. [51] Y.Y. Sun, Q. Zhang, L. Fan, D.D. Han, L. Li, L. Yan, P.Y. Hou, Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries, J. Colloid Interface Sci. 628 (2022) 877-885. |