[1] Y. Sun, J. J. Cheng, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Prog. Energy Combust. Sci. 38 (4) (2012) 522-550. [2] Y. Sun, J. J. Cheng, Dilute acid pretreatment of rye straw and bermudagrass for ethanol production, Bioresour. Technol. 96 (14) (2005) 1599-1606. [3] T. Welton, Room-Temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071- 2084. [4] J.D. Holbrey, W.M. Reichert, R.P. Swatloski, G.A. Broker, W.R. Pitner, K.R. Seddon, R.D. Rogers, Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions, Green Chem. 4 (5) (2002) 407-413. [5] K. M. Gupta, J. Jiang, Cellulose dissolution and regeneration in ionic liquids: A computational perspective, Chem. Eng. Sci. 121 (2015) 180-189. [6] S.H. Lee, T.V. Doherty, R.J. Linhardt, J.S. Dordick, Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis, Biotechnol. Bioeng. 102 (5) (2009) 1368-1376. [7] S. Singh, B.A. Simmons, K.P. Vogel, Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass, Biotechnol. Bioeng. 104 (1) (2009) 68-75. [8] C.L. Li, B. Knierim, C. Manisseri, R. Arora, H.V. Scheller, M. Auer, K.P. Vogel, B.A. Simmons, S. Singh, Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification, Bioresour. Technol. 101 (13) (2010) 4900-4906. [9] G. Cheng, P. Varanasi, C.L. Li, H.B. Liu, Y.B. Melnichenko, B.A. Simmons, M.S. Kent, S. Singh, Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis, Biomacromolecules 12 (4) (2011) 933-941. [10] T. Vancov, A.S. Alston, T. Brown, S.McIntosh, Use of ionic liquids in converting lignocellulosic material to biofuels, Renew. Energy 45 (2012) 1-6. [11] H. Abushammala, J. Mao, A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids, Polymers 12 (1) (2020) 195. [12] J. Vitz, T. Erdmenger, C. Haensch, U.S. Schubert, Extended dissolution studies of cellulose in imidazolium based ionic liquids, Green Chem. 11 (3) (2009) 417-424. [13] J. P. de Oliveira, G. P. Bruni, K. O. Lima, S. L. M. E. Halal, G. S. da Rosa, A. R. G. Dias, E. da Rosa Zavareze, Cellulose fibers extracted from rice and oat husks and their application in hydrogel, Food Chem. 221 (2017) 153-160. [14] A. Ma’ruf, B. Pramudono, N. Aryanti, Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted, AIP Conf. Proc. 1823 (1) (2017) 020013. [15] M. R. Karim, M.F.M. Zain, M. Jamil,M.R. Karim, M.M. Zain, M. Jamil, Strength of mortar and concrete as influenced by rice husk ash: A review, World Appl. Sci. J. 19 (10) (2012) 1501-1513. [16] I. B. Ugheoke, A critical assessment and new research directions of rice husk silica processing methods and properties, Maejo Int. J. Sci. Technol. 6 (2012) 430-448. [17] T.N. Ang, G.C. Ngoh, A.S. Chua, M.G. Lee, Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses, Biotechnol. Biofuels 5 (1) (2012) 67. [18] T. N. Ang, L. W. Yoon, K. M. Lee, G.-C. Ngoh, A. S. M. Chua, M. G. Lee, Efficiency of ionic liquid in the dissolution of rice husk, BioResources 6 (2011) 4790-4800. [19] Z. Baramaki, Z. Arab Aboosadi, N. Esfandiari, Fluid phase equilibrium prediction of acid gas solubility in imidazolium-based ionic liquids with the Peng-Robinson and the PC-SAFT models, Petroleum Sci. Technol. 37 (1) (2019) 110-117. [20] Z. Tshemese, S.C. Masikane, S. Mlowe, N.Revaprasadu, Progress in green solvents for the stabilisation of nanomaterials: Imidazolium based ionic liquids. Recent Advances in Ionic Liquids, InTech, 2018. [21] D. Lazarenko, F. Khabaz, Thermodynamics and rheology of imidazolium-based ionic liquid-oil mixtures: A molecular simulation study, J. Phys. Chem. B 125 (22) (2021) 5897-5908. [22] J.X. Tian, K. Pan, Z.H. Lang, R. Huang, W.R. Sun, H.Y. Chu, H.T. Ren, L.Y. Dong, Y.W. Li, H.N. Wang, H.Liu, Thermodynamics of imidazolium-based ionic liquids for inhibiting the spontaneous combustion of sulfide ore, Sustainability 14 (13) (2022) 7915. [23] V.N. Kiva, E.K. Hilmen, S.Skogestad, Azeotropic phase equilibrium diagrams: A survey, Chem. Eng. Sci. 58 (10) (2003) 1903-1953. [24] E.I. Alevizou, G.D. Pappa, E.C.Voutsas, Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC, Fluid Phase Equilibria 284 (2) (2009) 99-105. [25] J. Lohmann, R. Joh, J.Gmehling, From UNIFAC to modified UNIFAC (Dortmund), Ind. Eng. Chem. Res. 40 (3) (2001) 957-964. [26] S. Nebig, J. Gmehling, Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: Typical results and present status of the modified UNIFAC matrix for ionic liquids, Fluid Phase Equilibria 302 (1-2) (2011) 220-225. [27] D.Y. Peng, D.B.Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fund. 15 (1) (1976) 59-64. [28] B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001. [29] P. Linstrom (Ed.), NIST Chemistry WebBook, NIST Standard Reference Database 69, Systems Integration for Manufacturing Applications, National Institute of Standards and Technology, 1997. [30] J.O. Valderrama, W.W. Sanga, J.A.Lazzús, Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids, Ind. Eng. Chem. Res. 47 (4) (2008) 1318-1330. [31] D.W. Fang, W. Guan, J. Tong, Z.W. Wang, J.Z. Yang, Study on physicochemical properties of ionic liquids based on alanine[Cnmim][Ala](N=2, 3, 4, 5, 6), J. Phys. Chem. B 112 (25) (2008) 7499-7505. [32] S.P. Verevkin, D.H. Zaitsau, V.N. Emel'yanenko, Y.U. Paulechka, A.V. Blokhin, A.B. Bazyleva, G.J. Kabo, Thermodynamics of ionic liquids precursors: 1-methylimidazole, J. Phys. Chem. B 115 (15) (2011) 4404-4411. [33] J. M. Prausnitz, R. N. Lichtenthaler, E. Gomes, Molecular thermodynamics of fluid-phase equilibria, International Series in the Physical and Chemical Engineering Sciences, 3rd ed., Person Education, Inc., Upper Saddle River, N.J, 1999. [34] P.A.Z. Suarez, S. Einloft, J.E.L. Dullius, R.F. de Souza, J.Dupont, Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation, J. Chim. Phys. 95 (7) (1998) 1626-1639. [35] P. Zhang, S.J. Dong, H.H. Ma, B.X. Zhang, Y.F. Wang, X.M.Hu, Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids, Ind. Crops Prod. 76 (2015) 688-696. [36] W. Lan, C.F. Liu, R.C. Sun, Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction, J. Agric. Food Chem. 59 (16) (2011) 8691-8701. [37] G.L.Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31 (3) (1959) 426-428. [38] A. Thygesen, J. Oddershede, H. Lilholt, A.B. Thomsen, K. Ståhl, On the determination of crystallinity and cellulose content in plant fibres, Cellulose 12 (6) (2005) 563-576. [39] J. Gmehling, J. Krafczyk, J. Ahlers, S. Nebig, I. Hunecker, M. Eisel, D. Fischer, B. Krentscher, K. Beyer, Pure Compund Data, Dortmund Data Bank 2014 (1983). [40] J.D. Holbrey, K.R. Seddon, R. Wareing, A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors, Green Chem. 3 (1) (2001) 33-36. [41] S. Nebig, V. Liebert, J. Gmehling, Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1, 1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund), Fluid Phase Equilibria 277 (1) (2009) 61-67. [42] U. Domanska, M. Zawadzki, J. A. González, Thermodynamics of organic mixtures containing amines. X. Phase equilibria for binary systems formed by imidazoles and hydrocarbons: Experimental data and modelling using DISQUAC, J. Chem. Thermodyn. 42 (4) (2010) 545-552. [43] A.A. Fannin Jr, D.A. Floreani, L.A. King, J.S. Landers, B.J. Piersma, D.J. Stech, R.L. Vaughn, J.S. Wilkes, J.L.Williams, Properties of 1, 3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities, J. Phys. Chem. 88 (12) (1984) 2614-2621. [44] T. Beyersdorff, T. J. S. Schubert, U. Welz-Biermann, W. Pitner, A. P. Abbott, K. J. McKenzie, K. S. Ryder, Synthesis of ionic liquids, in: F. Endres, A. Abbott, D. MacFarlane (Eds.), Electrodeposition from Ionic Liquids, second ed., Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 17-53. [45] Y. Zheng, K. Dong, Q. Wang, J.M. Zhang, X.M.Lu, Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids, J. Chem. Eng. Data 58 (1) (2013) 32-42. [46] R. Vegas, J.L. Alonso, H. Domínguez, J.C. Parajó, Processing of rice husk autohydrolysis liquors for obtaining food ingredients, J. Agric. Food Chem. 52 (24) (2004) 7311-7317. [47] A. Valverde, B. Sarria, J. P Monteagudo, Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz, Sci. Tech. 1 (37) (2007) 255+. [48] B. C. Saha, M. A. Cotta, Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol, Biomass Bioenergy 32 (10) (2008) 971-977. [49] A. Brandt-Talbot, F.J.V. Gschwend, P.S. Fennell, T.M. Lammens, B. Tan, J. Weale, J.P. Hallett, An economically viable ionic liquid for the fractionation of lignocellulosic biomass, Green Chem. 19 (13) (2017) 3078-3102. [50] H. Zhao, C.L. Jones, G.A. Baker, S.Q. Xia, O. Olubajo, V.N. Person, Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis, J. Biotechnol. 139 (1) (2009) 47-54. [51] N. Sun, M. Rahman, Y. Qin, M.L. Maxim, H. Rodríguez, R.D. Rogers, Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem. 11 (5) (2009) 646-655. [52] I. Hasanov, M. Raud, T.Kikas, The role of ionic liquids in the lignin separation from lignocellulosic biomass, Energies 13 (18) (2020) 4864. [53] T. Raj, R. Gaur, P. Dixit, R.P. Gupta, V. Kagdiyal, R. Kumar, D.K. Tuli, Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility, Carbohydr. Polym. 149 (2016) 369-381. [54] L. T. P. Trinh, Y. J. Lee, J.W. Lee, H.J. Lee, Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass, Biomass Bioenergy 81 (2015) 1-8. [55] L.T.P. Trinh, Y.J. Lee, J.W. Lee, W.H. Lee, Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate, Biotechnol. Bioprocess Eng. 23 (2018) 228-237. [56] E. Bahcegul, S. Apaydin, N.I. Haykir, E. Tatli, U. Bakir, Different ionic liquids favor different lignocellulosic biomass particle sizes during pretreatment to function efficiently, Green Chem. 14 (7) (2012) 1896-1903. [57] D. Battegazzore, S. Bocchini, J. Alongi, A. Frache, F. Marino, Cellulose extracted from rice husk as filler for poly(lactic acid): Preparation and characterization, Cellulose 21 (3) (2014) 1813-1821. [58] D.C. Marin, A. Vecchio, L.N. Ludueña, D. Fasce, V.A. Alvarez, P.M. Stefani, Revalorization of rice husk waste as a source of cellulose and silica, Fibers Polym 16 (2) (2015) 285-293. [59] Z. Jiang, D. Hu, Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes, J. Mol. Liq. 276 (2019) 105-114. [60] Z. Ullah, Z. Man, A.S. Khan, N. Muhammad, H. Mahmood, O. Ben Ghanem, P. Ahmad, M.U. Hassan Shah, Mamoon-Ur-Rashid, M.Raheel, Extraction of valuable chemicals from sustainable rice husk waste using ultrasonic assisted ionic liquids technology, J. Clean. Prod. 220 (2019) 620-629. |